1887

Abstract

Macrophages and dendritic cells (DCs) play essential roles in host defence against microbial infections. In the present study, it is shown that human monocyte-derived macrophages and DCs express both type I and type III interferons (IFNs) [IFN-, IFN- and interleukin 28 (IL-28), IL-29, respectively], tumour necrosis factor alpha and the chemokines CCL5 and CXCL10 after herpes simplex virus 1 (HSV-1) infection. The cytokine-inducing activity of HSV-1 was dependent on viability of the virus, because UV-inactivated virus did not induce a cytokine response. Pretreatment of the cells with IFN- or IL-29 strongly enhanced the HSV-1-induced cytokine response. Both IFN- and IL-29 decreased viral immediate-early (IE) gene infected-cell protein 27 (ICP27) transcription, suggesting that IL-29 possesses antiviral activity against HSV-1 comparable to that of IFN-. Macrophage infection with HSV-1 lacking functional ICP27 (d27-1 virus) resulted in strongly enhanced cytokine mRNA expression and protein production. In contrast, viruses lacking functional IE genes ICP0 and ICP4 induced cytokine responses comparable to those of the wild-type viruses. The activation of transcription factors IRF-3 and NF-B was strongly augmented when macrophages were infected with the ICP27 mutant virus. Altogether, the results demonstrate that HSV-1 both induces and inhibits the antiviral response in human cells and that the type III IFN IL-29, together with IFN-, amplifies the antiviral response against the virus. It is further identified that viral IE-gene expression interferes with the antiviral response in human macrophages and ICP27 is identified as an important viral protein counteracting the early innate immune response.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81541-0
2006-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/5/1099.html?itemId=/content/journal/jgv/10.1099/vir.0.81541-0&mimeType=html&fmt=ahah

References

  1. Ankel H., Westra D. F., Welling-Wester S., Lebon P. 1998; Induction of interferon- α by glycoprotein D of herpes simplex virus: a possible role of chemokine receptors. Virology 251:317–326 [CrossRef]
    [Google Scholar]
  2. Bartlett N. W., Buttigieg K., Kotenko S. V., Smith G. L. 2005; Murine interferon lambdas (type III interferons) exhibit potent antiviral activity in vivo in a poxvirus infection model. J Gen Virol 86:1589–1596 [CrossRef]
    [Google Scholar]
  3. Biron C. A., Nguyen K. B., Pien G. C., Cousens L. P., Salazar-Mather T. P. 1999; Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189–220 [CrossRef]
    [Google Scholar]
  4. Coccia E. M., Severa M., Giacomini E., Monneron D., Remoli M. E., Julkunen I., Cella M., Lande R., Uzé G. 2004; Viral infection and Toll-like receptor agonists induce a differential expression of type I and λ interferons in human plasmacytoid and monocyte-derived dendritic cells. Eur J Immunol 34:796–805 [CrossRef]
    [Google Scholar]
  5. Der S. D., Zhou A., Williams B. R. G., Silverman R. H. 1998; Identification of genes differentially regulated by interferon α , β , or γ using oligonucleotide arrays. Proc Natl Acad Sci U S A 95:15623–15628 [CrossRef]
    [Google Scholar]
  6. Duerst R. J., Morrison L. A. 2003; Innate immunity to herpes simplex virus type 2. Viral Immunol 16:475–490 [CrossRef]
    [Google Scholar]
  7. Eidson K. M., Hobbs W. E., Manning B. J., Carlson P., DeLuca N. A. 2002; Expression of herpes simplex virus ICP0 inhibits the induction of interferon-stimulated genes by viral infection. J Virol 76:2180–2191 [CrossRef]
    [Google Scholar]
  8. Hardwicke M. A., Sandri-Goldin R. M. 1994; The herpes simplex virus regulatory protein ICP27 contributes to the decrease in cellular mRNA levels during infection. J Virol 68:4797–4810
    [Google Scholar]
  9. Hardy W. R., Sandri-Goldin R. M. 1994; Herpes simplex virus inhibits host cell splicing, and regulatory protein ICP27 is required for this effect. J Virol 68:7790–7799
    [Google Scholar]
  10. Härle P., Cull V., Agbaga M.-P., Silverman R., Williams B. R. G., James C., Carr D. J. J. 2002a; Differential effect of murine alpha/beta interferon transgenes on antagonization of herpes simplex virus type 1 replication. J Virol 76:6558–6567 [CrossRef]
    [Google Scholar]
  11. Härle P., Sainz B. Jr, Carr D. J. J., Halford W. P. 2002b; The immediate-early protein, ICP0, is essential for the resistance of herpes simplex virus to interferon- α/β . Virology 293:295–304 [CrossRef]
    [Google Scholar]
  12. He B., Gross M., Roizman B. 1997; The γ 134.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1 α to dephosphorylate the α subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci U S A 94:843–848 [CrossRef]
    [Google Scholar]
  13. Jean S., LeVan K. M., Song B., Levine M., Knipe D. M. 2001; Herpes simplex virus 1 ICP27 is required for transcription of two viral late ( γ 2) genes in infected cells. Virology 283:273–284 [CrossRef]
    [Google Scholar]
  14. Klotzbücher A., Mittnacht S., Kirchner H., Jacobsen H. 1990; Different effects of IFN γ and IFN α/β on “immediate early” gene expression of HSV-1. Virology 179:487–491 [CrossRef]
    [Google Scholar]
  15. Kodukula P., Liu T., Van Rooijen N., Jager M. J., Hendricks R. L. 1999; Macrophage control of herpes simplex virus type 1 replication in the peripheral nervous system. J Immunol 162:2895–2905
    [Google Scholar]
  16. Kotenko S. V., Gallagher G., Baurin V. V. & 7 other authors 2003; IFN- λ s mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 4:69–77
    [Google Scholar]
  17. Krug A., Luker G. D., Barchet W., Leib D. A., Akira S., Colonna M. 2004; Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood 103:1433–1437
    [Google Scholar]
  18. Kurt-Jones E. A., Chan M., Zhou S., Wang J., Reed G., Bronson R., Arnold M. M., Knipe D. M., Finberg R. W. 2004; Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Sci U S A 101:1315–1320 [CrossRef]
    [Google Scholar]
  19. Lin R., Noyce R. S., Collins S. E., Everett R. D., Mossman K. L. 2004; The herpes simplex virus ICP0 RING finger domain inhibits IRF3- and IRF7-mediated activation of interferon-stimulated genes. J Virol 78:1675–1684 [CrossRef]
    [Google Scholar]
  20. Lucey D. R., Clerici M., Shearer G. M. 1996; Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases. Clin Microbiol Rev 9:532–562
    [Google Scholar]
  21. Lund J., Sato A., Akira S., Medzhitov R., Iwasaki A. 2003; Toll-like receptor 9-mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med 198:513–520 [CrossRef]
    [Google Scholar]
  22. Malmgaard L., Melchjorsen J., Bowie A. G., Mogensen S. C., Paludan S. R. 2004; Viral activation of macrophages through TLR-dependent and -independent pathways. J Immunol 173:6890–6898 [CrossRef]
    [Google Scholar]
  23. Marié I., Durbin J. E., Levy D. E. 1998; Differential viral induction of distinct interferon- α genes by positive feedback through interferon regulatory factor-7. EMBO J 17:6660–6669 [CrossRef]
    [Google Scholar]
  24. Matikainen S., Pirhonen J., Miettinen M., Lehtonen A., Govenius-Vintola C., Sareneva T., Julkunen I. 2000; Influenza A and Sendai viruses induce differential chemokine gene expression and transcription factor activation in human macrophages. Virology 276:138–147 [CrossRef]
    [Google Scholar]
  25. McCarthy A. M., McMahan L., Schaffer P. A. 1989; Herpes simplex virus type 1 ICP27 deletion mutants exhibit altered patterns of transcription and are DNA deficient. J Virol 63:18–27
    [Google Scholar]
  26. Melchjorsen J., Pedersen F. S., Mogensen S. C., Paludan S. R. 2002; Herpes simplex virus selectively induces expression of the CC chemokine RANTES/CCL5 in macrophages through a mechanism dependent on PKR and ICP0. J Virol 76:2780–2788 [CrossRef]
    [Google Scholar]
  27. Melchjorsen J., Sørensen L. N., Paludan S. R. 2003; Expression and function of chemokines during viral infections: from molecular mechanisms to in vivo function. J Leukoc Biol 74:331–343 [CrossRef]
    [Google Scholar]
  28. Melroe G. T., DeLuca N. A., Knipe D. M. 2004; Herpes simplex virus 1 has multiple mechanisms for blocking virus-induced interferon production. J Virol 78:8411–8420 [CrossRef]
    [Google Scholar]
  29. Miettinen M., Matikainen S., Vuopio-Varkila J., Pirhonen J., Varkila K., Kurimoto M., Julkunen I. 1998; Lactobacilli and streptococci induce interleukin-12 (IL-12), IL-18, and gamma interferon production in human peripheral blood mononuclear cells. Infect Immun 66:6058–6062
    [Google Scholar]
  30. Mogensen T. H., Paludan S. R. 2001; Molecular pathways in virus-induced cytokine production. Microbiol Mol Biol Rev 65:131–150 [CrossRef]
    [Google Scholar]
  31. Mogensen T. H., Melchjorsen J., Malmgaard L., Casola A., Paludan S. R. 2004; Suppression of proinflammatory cytokine expression by herpes simplex virus type 1. J Virol 78:5883–5890 [CrossRef]
    [Google Scholar]
  32. Mossman K. L., Saffran H. A., Smiley J. R. 2000; Herpes simplex virus ICP0 mutants are hypersensitive to interferon. J Virol 74:2052–2056 [CrossRef]
    [Google Scholar]
  33. Nemeroff M. E., Barabino S. M. L., Li Y., Keller W., Krug R. M. 1998; Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3′ end formation of cellular pre-mRNAs. Mol Cell 1:991–1000 [CrossRef]
    [Google Scholar]
  34. Oberman F., Panet A. 1988; Inhibition of transcription of herpes simplex virus immediate early genes in interferon-treated human cells. J Gen Virol 69:1167–1177 [CrossRef]
    [Google Scholar]
  35. Paludan S. R. 2001; Requirements for the induction of interleukine-6 by herpes simplex virus-infected leukocytes. J Virol 75:8008–8015 [CrossRef]
    [Google Scholar]
  36. Paludan S. R., Mogensen S. C. 2001; Virus-cell interactions regulating induction of tumor necrosis factor α production in macrophages infected with herpes simplex virus. J Virol 75:10170–10178 [CrossRef]
    [Google Scholar]
  37. Paludan S. R., Melchjorsen J., Malmgaard L., Mogensen S. C. 2002; Expression of genes for cytokines and cytokine-related functions in leukocytes infected with Herpes simplex virus: comparison between resistant and susceptible mouse strains. Eur Cytokine Netw 13:306–316
    [Google Scholar]
  38. Pirhonen J., Sareneva T., Kurimoto M., Julkunen I., Matikainen S. 1999; Virus infection activates IL-1 β and IL-18 production in human macrophages by a caspase-1-dependent pathway. J Immunol 162:7322–7329
    [Google Scholar]
  39. Poppers J., Mulvey M., Khoo D., Mohr I. 2000; Inhibition of PKR activation by the proline-rich RNA binding domain of the herpes simplex virus type 1 Us11 protein. J Virol 74:11215–11221 [CrossRef]
    [Google Scholar]
  40. Rice S. A., Knipe D. M. 1990; Genetic evidence for two distinct transactivation functions of the herpes simplex virus alpha protein ICP27. J Virol 64:1704–1715
    [Google Scholar]
  41. Robek M. D., Boyd B. S., Chisari F. V. 2005; Lambda interferon inhibits hepatitis B and C virus replication. J Virol 79:3851–3854 [CrossRef]
    [Google Scholar]
  42. Romagnani S. 1997; The Th1/Th2 paradigm. Immunol Today 18:263–266
    [Google Scholar]
  43. Sacks W. R., Greene C. C., Aschman D. P., Schaffer P. A. 1985; Herpes simplex virus type 1 ICP27 is an essential regulatory protein. J Virol 55:796–805
    [Google Scholar]
  44. Sen G. C. 2001; Viruses and interferons. Annu Rev Microbiol 55:255–281 [CrossRef]
    [Google Scholar]
  45. Shepard A. A., DeLuca N. A. 1991; Activities of heterodimers composed of DNA-binding- and transactivation-deficient subunits of the herpes simplex virus regulatory protein ICP4. J Virol 65:299–307
    [Google Scholar]
  46. Sheppard P., Kindsvogel W., Xu W. & 23 other authors 2003; IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 4:63–68 [CrossRef]
    [Google Scholar]
  47. Sirén J., Pirhonen J., Julkunen I., Matikainen S. 2005; IFN- α regulates TLR-dependent gene expression of IFN- α , IFN- β , IL-28, and IL-29. J Immunol 174:1932–1937 [CrossRef]
    [Google Scholar]
  48. Song B., Yeh K.-C., Liu J., Knipe D. M. 2001; Herpes simplex virus gene products required for viral inhibition of expression of G1-phase functions. Virology 290:320–328 [CrossRef]
    [Google Scholar]
  49. Spencer C. A., Dahmus M. E., Rice S. A. 1997; Repression of host RNA polymerase II transcription by herpes simplex virus type 1. J Virol 71:2031–2040
    [Google Scholar]
  50. Stingley S. W., Garcia Ramirez J. J., Aguilar S. A., Simmen K., Sandri-Goldin R. M., Ghazal P., Wagner E. K. 2000; Global analysis of herpes simplex virus type 1 transcription using an oligonucleotide-based DNA microarray. J Virol 74:9916–9927 [CrossRef]
    [Google Scholar]
  51. Stow N. D., Stow E. C. 1986; Isolation and characterization of a herpes simplex virus type 1 mutant containing a deletion within the gene encoding the immediate early polypeptide Vmw110. J Gen Virol 67:2571–2585 [CrossRef]
    [Google Scholar]
  52. Uprichard S. L., Knipe D. M. 1996; Herpes simplex ICP27 mutant viruses exhibit reduced expression of specific DNA replication genes. J Virol 70:1969–1980
    [Google Scholar]
  53. Veckman V., Miettinen M., Matikainen S., Lande R., Giacomini E., Coccia E. M., Julkunen I. 2003; Lactobacilli and streptococci induce inflammatory chemokine production in human macrophages that stimulates Th1 cell chemotaxis. J Leukoc Biol 74:395–402 [CrossRef]
    [Google Scholar]
  54. Veckman V., Miettinen M., Pirhonen J., Sirén J., Matikainen S., Julkunen I. 2004; Streptococcus pyogenes and Lactobacillus rhamnosus differentially induce maturation and production of Th1-type cytokines and chemokines in human monocyte-derived dendritic cells. J Leukoc Biol 75:764–771
    [Google Scholar]
  55. Whitley R. J., Roizman B. 2001; Herpes simplex virus infections. Lancet 357:1513–1518 [CrossRef]
    [Google Scholar]
  56. Zhao X., Deak E., Soderberg K., Linehan M., Spezzano D., Zhu J., Knipe D. M., Iwasaki A. 2003; Vaginal submucosal dendritic cells, but not Langerhans cells, induce protective Th1 responses to herpes simplex virus-2. J Exp Med 197:153–162 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81541-0
Loading
/content/journal/jgv/10.1099/vir.0.81541-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error