1887

Abstract

Integration-site selection by retroviruses and retroviral vectors has gained increased scientific interest. Foamy viruses (FVs) constitute a unique subfamily () of the family , for which the integration pattern into the human genome has not yet been determined. To accomplish this, 293 cells were transduced with FV vectors and the integration sites into the cellular genome were determined by a high-throughput method based on inverse PCR. For comparison, a limited number of murine leukemia virus (MLV) and human immunodeficiency virus (HIV) integration sites were analysed in parallel. Altogether, 628 FV, 87 HIV and 141 MLV distinct integration sites were mapped to the human genome. The sequences were analysed for RefSeq genes, promoter regions, CpG islands and insertions into cellular oncogenes. Compared with the integration-site preferences of HIV, which strongly favours active genes, and MLV, which favours integration near transcription-start regions, our results indicate that FV integration has neither of these preferences. However, once integration has occurred into a transcribed region of the genome, FVs tend to target promoter-close regions, albeit with less preference than MLV. Furthermore, our study revealed a palindromic consensus sequence for integration, which was centred on the virus-specific, four-base-duplicated target site. In summary, it is shown that the integration pattern of FVs appears to be unique compared with those of other retroviral genera.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81554-0
2006-05-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/5/1339.html?itemId=/content/journal/jgv/10.1099/vir.0.81554-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1987 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  2. Baum C., Fehse B. 2003; Mutagenesis by retroviral transgene insertion: risk assessment and potential alternatives. Curr Opin Mol Ther 5:458–462
    [Google Scholar]
  3. Baum C., Düllmann J., Li Z., Fehse B., Meyer J., Williams D. A., von Kalle C. 2003; Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 101:2099–2114 [CrossRef]
    [Google Scholar]
  4. Brown P. O. 1997; Integration. In Retroviruses pp  161–203 Edited by Coffin J. M., Hughes S. H., Varmus H. E. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  5. Bushman F. 2002 Lateral DNA Transfer Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  6. Bushman F. D. 2003; Targeting survival: integration site selection by retroviruses and LTR-retrotransposons. Cell 115:135–138 [CrossRef]
    [Google Scholar]
  7. Cherepanov P., Maertens G., Proost P., Devreese B., Van Beeumen J., Engelborghs Y., De Clercq E., Debyser Z. 2003; HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J Biol Chem 278:372–381
    [Google Scholar]
  8. Ciuffi A., Llano M., Poeschla E., Hoffmann C., Leipzig J., Shinn P., Ecker J. R., Bushman F. 2005; A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 11:1287–1289 [CrossRef]
    [Google Scholar]
  9. Costello J. F., Frühwald M. C., Smiraglia D. J. & 20 other authors 2000; Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 24:132–138 [CrossRef]
    [Google Scholar]
  10. Craigie R. 2001; HIV integrase, a brief overview from chemistry to therapeutics. J Biol Chem 276:23213–23216 [CrossRef]
    [Google Scholar]
  11. Craigie R. 2002; Retroviral DNA integration. In Mobile DNA II pp  613–630 Edited by Craig N. L., Craigie R., Gellert M., Lambowitz A. M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Cross S. H., Bird A. P. 1995; CpG islands and genes. Curr Opin Genet Dev 5:309–314 [CrossRef]
    [Google Scholar]
  13. Delelis O., Petit C., Leh H., Mbemba G., Mouscadet J.-F., Sonigo P. 2005; A novel function for spumaretrovirus integrase: an early requirement for integrase-mediated cleavage of 2 LTR circles. Retrovirology 2:31 [CrossRef]
    [Google Scholar]
  14. DuBridge R. B., Tang P., Hsia H. C., Leong P.-M., Miller J. H., Calos M. P. 1987; Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol Cell Biol 7:379–387
    [Google Scholar]
  15. Enssle J., Moebes A., Heinkelein M., Panhuysen M., Mauer B., Schweizer M., Neumann-Haefelin D., Rethwilm A. 1999; An active foamy virus integrase is required for virus replication. J Gen Virol 80:1445–1452
    [Google Scholar]
  16. Fehse B., Kustikova O. S., Bubenheim M., Baum C. 2004; Pois(s)on – it's a question of dose. Gene Ther 11:879–881 [CrossRef]
    [Google Scholar]
  17. Fischer N., Heinkelein M., Lindemann D., Enssle J., Baum C., Werder E., Zentgraf H., Müller J. G., Rethwilm A. 1998; Foamy virus particle formation. J Virol 72:1610–1615
    [Google Scholar]
  18. Gardiner-Garden M., Frommer M. 1987; CpG islands in vertebrate genomes. J Mol Biol 196:261–282 [CrossRef]
    [Google Scholar]
  19. Goff S. P. 1992; Genetics of retroviral integration. Annu Rev Genet 26:527–544 [CrossRef]
    [Google Scholar]
  20. Hacein-Bey-Abina S., Le Deist F., Carlier F. & 12 other authors 2002; Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346:1185–1193 [CrossRef]
    [Google Scholar]
  21. Hacein-Bey-Abina S., von Kalle C., Schmidt M. & 8 other authors 2003; A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348:255–256 [CrossRef]
    [Google Scholar]
  22. Heinkelein M., Pietschmann T., Jármy G. & 9 other authors 2000; Efficient intracellular retrotransposition of an exogenous primate retrovirus genome. EMBO J 19:3436–3445 [CrossRef]
    [Google Scholar]
  23. Heinkelein M., Rammling M., Juretzek T., Lindemann D., Rethwilm A. 2003; Retrotransposition and cell-to-cell transfer of foamy viruses. J Virol 77:11855–11858 [CrossRef]
    [Google Scholar]
  24. Hematti P., Hong B.-K., Ferguson C. & 15 other authors 2004; Distinct genomic integration of MLV and SIV vectors in primate hematopoietic stem and progenitor cells. PLoS Biol 2:e423 [CrossRef]
    [Google Scholar]
  25. Holman A. G., Coffin J. M. 2005; Symmetrical base preferences surrounding HIV-1, avian sarcoma/leukosis virus, and murine leukemia virus integration sites. Proc Natl Acad Sci U S A 102:6103–6107 [CrossRef]
    [Google Scholar]
  26. International Human Genome Sequencing Consortium; 2004; Finishing the euchromatic sequence of the human genome. Nature 431:931–945 [CrossRef]
    [Google Scholar]
  27. Josephson N. C., Vassilopoulos G., Trobridge G. D., Priestley G. V., Wood B. L., Papayannopoulou T., Russell D. W. 2002; Transduction of human NOD/SCID-repopulating cells with both lymphoid and myeloid potential by foamy virus vectors. Proc Natl Acad Sci U S A 99:8295–8300 [CrossRef]
    [Google Scholar]
  28. Juretzek T., Holm T., Gärtner K. & 7 other authors 2004; Foamy virus integration. J Virol 78:2472–2477 [CrossRef]
    [Google Scholar]
  29. Kent W. J. 2002; blat – the blast-like alignment tool. Genome Res 12:656–664 [CrossRef]
    [Google Scholar]
  30. Kustikova O., Fehse B., Modlich U. & 7 other authors 2005; Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking. Science 308:1171–1174 [CrossRef]
    [Google Scholar]
  31. Larsen F., Gundersen R., Lopez R., Prydz H. 1992; CpG islands as gene markers in the human genome. Genomics 13:1095–1107 [CrossRef]
    [Google Scholar]
  32. Leurs C., Jansen M., Pollok K. E. & 8 other authors 2003; Comparison of three retroviral vector systems for transduction of nonobese diabetic/severe combined immunodeficiency mice repopulating human CD34+ cord blood cells. Hum Gene Ther 14:509–519 [CrossRef]
    [Google Scholar]
  33. Lewinski M. K., Bisgrove D., Shinn P. & 7 other authors 2005; Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription. J Virol 79:6610–6619 [CrossRef]
    [Google Scholar]
  34. Mitchell R. S., Beitzel B. F., Schröder A. R. W., Shinn P., Chen H., Berry C. C., Ecker J. R., Bushman F. D. 2004; Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2:e234 [CrossRef]
    [Google Scholar]
  35. Müller H.-P., Varmus H. E. 1994; DNA bending creates favored sites for retroviral integration: an explanation for preferred insertion sites in nucleosomes. EMBO J 13:4704–4714
    [Google Scholar]
  36. Narezkina A., Taganov K. D., Litwin S., Stoyanova R., Hayashi J., Seeger C., Skalka A. M., Katz R. A. 2004; Genome-wide analyses of avian sarcoma virus integration sites. J Virol 78:11656–11663 [CrossRef]
    [Google Scholar]
  37. Pietschmann T., Heinkelein M., Heldmann M., Zentgraf H., Rethwilm A., Lindemann D. 1999; Foamy virus capsids require the cognate envelope protein for particle export. J Virol 73:2613–2621
    [Google Scholar]
  38. Pruss D., Bushman F. D., Wolffe A. P. 1994a; Human immunodeficiency virus integrase directs integration to sites of severe DNA distortion within the nucleosome core. Proc Natl Acad Sci U S A 91:5913–5917 [CrossRef]
    [Google Scholar]
  39. Pruss D., Reeves R., Bushman F. D., Wolffe A. P. 1994b; The influence of DNA and nucleosome structure on integration events directed by HIV integrase. J Biol Chem 269:25031–25041
    [Google Scholar]
  40. Pryciak P. M., Varmus H. E. 1992; Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection. Cell 69:769–780 [CrossRef]
    [Google Scholar]
  41. Rethwilm A. 1995; Regulation of foamy virus gene expression. Curr Top Microbiol Immunol 193:1–24
    [Google Scholar]
  42. Sambrook J., Russell D. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Schmidt M., Rethwilm A. 1995; Replicating foamy virus-based vectors directing high level expression of foreign genes. Virology 210:167–178 [CrossRef]
    [Google Scholar]
  44. Schmidt M., Herchenröder O., Heeney J., Rethwilm A. 1997; Long terminal repeat U3 length polymorphism of human foamy virus. Virology 230:167–178 [CrossRef]
    [Google Scholar]
  45. Schröder A. R. W., Shinn P., Chen H., Berry C., Ecker J. R., Bushman F. 2002; HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110:521–529 [CrossRef]
    [Google Scholar]
  46. Turlure F., Devroe E., Silver P. A., Engelman A. 2004; Human cell proteins and human immunodeficiency virus DNA integration. Front Biosci 9:3187–3208 [CrossRef]
    [Google Scholar]
  47. von Kalle C., Fehse B., Layh-Schmitt G., Schmidt M., Kelly P., Baum C. 2004; Stem cell clonality and genotoxicity in hematopoietic cells: gene activation side effects should be avoidable. Semin Hematol 41:303–318 [CrossRef]
    [Google Scholar]
  48. Wu X., Li Y., Crise B., Burgess S. M. 2003; Transcription start regions in the human genome are favored targets for MLV integration. Science 300:1749–1751 [CrossRef]
    [Google Scholar]
  49. Wu X., Li Y., Crise B., Burgess S. M., Munroe D. J. 2005; Weak palindromic consensus sequences are a common feature found at the integration target sites of many retroviruses. J Virol 79:5211–5214 [CrossRef]
    [Google Scholar]
  50. Yamashita R., Suzuki Y., Sugano S., Nakai K. 2005; Genome-wide analysis reveals strong correlation between CpG islands with nearby transcription start sites of genes and their tissue specificity. Gene 350:129–136 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81554-0
Loading
/content/journal/jgv/10.1099/vir.0.81554-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error