1887

Abstract

Although (VACV) was used to eradicate smallpox by dermal vaccination, there is little information available about the immune response induced at the vaccination site. Previously, an intradermal murine model that mimics smallpox vaccination was established. Here, this model was used to investigate which leukocytes are recruited to the infected lesion and what are the kinetics of recruitment. Data presented show that VACV infection induced the infiltration of macrophages, followed by granulocytes and lymphocytes. Up to 4 days post-infection, the major lymphocyte population was TCR T cells, but thereafter, there was a large recruitment of CD4 and CD8 T cells. Interestingly, the majority of T cells expressed the natural killer-cell marker DX5. This report is the first to characterize the local immune response sequence to VACV infection and represents a benchmark against which the responses induced by genetically modified VACVs may be compared.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81556-0
2006-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/5/1157.html?itemId=/content/journal/jgv/10.1099/vir.0.81556-0&mimeType=html&fmt=ahah

References

  1. Amara R. R., Nigam P., Sharma S., Liu J., Bostik V. 2004; Long-lived poxvirus immunity, robust CD4 help, and better persistence of CD4 than CD8 T cells. J Virol 78:3811–3816 [CrossRef]
    [Google Scholar]
  2. Asarnow D. M., Kuziel W. A., Bonyhadi M., Tigelaar R. E., Tucker P. W., Allison J. P. 1988; Limited diversity of γδ antigen receptor genes of Thy-1+ dendritic epidermal cells. Cell 55:837–847 [CrossRef]
    [Google Scholar]
  3. Belkaid Y., Jouin H., Milon G. 1996; A method to recover, enumerate and identify lymphomyeloid cells present in an inflammatory dermal site: a study in laboratory mice. J Immunol Methods 199:5–25 [CrossRef]
    [Google Scholar]
  4. Belkaid Y., Kamhawi S., Modi G., Valenzuela J., Noben-Trauth N., Rowton E., Ribeiro J., Sacks D. L. 1998; Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med 188:1941–1953 [CrossRef]
    [Google Scholar]
  5. Belshe R. B., Newman F. K., Frey S. E., Couch R. B., Treanor J. J., Tacket C. O., Yan L. 2004; Dose-dependent neutralizing-antibody responses to vaccinia. J Infect Dis 189:493–497 [CrossRef]
    [Google Scholar]
  6. Belyakov I. M., Earl P., Dzutsev A. & 8 other authors 2003; Shared modes of protection against poxvirus infection by attenuated and conventional smallpox vaccine viruses. Proc Natl Acad Sci U S A 100:9458–9463 [CrossRef]
    [Google Scholar]
  7. Bukowski J. F., Woda B. A., Habu S., Okumura K., Welsh R. M. 1983; Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo. J Immunol 131:1531–1538
    [Google Scholar]
  8. Combadiere B., Boissonnas A., Carcelain G., Lefranc E., Samri A., Bricaire F., Debre P., Autran B. 2004; Distinct time effects of vaccination on long-term proliferative and IFN- γ -producing T cell memory to smallpox in humans. J Exp Med 199:1585–1593 [CrossRef]
    [Google Scholar]
  9. Crotty S., Felgner P., Davies H., Glidewell J., Villarreal L., Ahmed R. 2003; Cutting edge: long-term B cell memory in humans after smallpox vaccination. J Immunol 171:4969–4973 [CrossRef]
    [Google Scholar]
  10. Davies D. H., McCausland M. M., Valdez C. & 7 other authors 2005; Vaccinia virus H3L envelope protein is a major target of neutralizing antibodies in humans and elicits protection against lethal challenge in mice. J Virol 79:11724–11733 [CrossRef]
    [Google Scholar]
  11. Dupasquier M., Stoitzner P., Oudenaren A., Romani N., Leenen P. J. M. 2004; Macrophages and dendritic cells constitute a major subpopulation of cells in the mouse dermis. J Invest Dermatol 123:876–879 [CrossRef]
    [Google Scholar]
  12. Earl P. L., Americo J. L., Wyatt L. S. & 15 other authors 2004; Immunogenicity of a highly attenuated MVA smallpox vaccine and protection against monkeypox. Nature 428:182–185 [CrossRef]
    [Google Scholar]
  13. Fogg C., Lustig S., Whitbeck J. C., Eisenberg R. J., Cohen G. H., Moss B. 2004; Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. J Virol 78:10230–10237 [CrossRef]
    [Google Scholar]
  14. Frey S. E., Newman F. K., Yan L., Lottenbach K. R., Belshe R. B. 2003; Response to smallpox vaccine in persons immunized in the distant past. JAMA 289:3295–3299 [CrossRef]
    [Google Scholar]
  15. Greenberg R. N., Kennedy J. S., Clanton D. J., Plummer E. A., Hague L., Cruz J., Ennis F. A., Blackwelder W. C., Hopkins R. J. 2005; Safety and immunogenicity of new cell-cultured smallpox vaccine compared with calf-lymph derived vaccine: a blind, single-centre, randomised controlled trial. Lancet 365:398–409 [CrossRef]
    [Google Scholar]
  16. Hammarlund E., Lewis M. W., Hansen S. G., Strelow L. I., Nelson J. A., Sexton G. J., Hanifin J. M., Slifka M. K. 2003; Duration of antiviral immunity after smallpox vaccination. Nat Med 9:1131–1137 [CrossRef]
    [Google Scholar]
  17. Hawlisch H., Belkaid Y., Baelder R., Hildeman D., Gerard C., Köhl J. 2005; C5a negatively regulates Toll-like receptor 4-induced immune responses. Immunity 22:415–426 [CrossRef]
    [Google Scholar]
  18. Kambayashi T., Assarsson E., Chambers B. J., Ljunggren H. G. 2001; Expression of the DX5 antigen on CD8+ T cells is associated with activation and subsequent cell death or memory during influenza virus infection. Eur J Immunol 31:1523–1530 [CrossRef]
    [Google Scholar]
  19. Kennedy M. K., Glaccum M., Brown S. N. & 13 other authors 2000; Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 191:771–780 [CrossRef]
    [Google Scholar]
  20. Moss B., Shisler J. L. 2001; Immunology 101 at poxvirus U: immune evasion genes. Semin Immunol 13:59–66 [CrossRef]
    [Google Scholar]
  21. Natuk R. J., Welsh R. M. 1987; Accumulation and chemotaxis of natural killer/large granular lymphocytes at sites of virus replication. J Immunol 138:877–883
    [Google Scholar]
  22. Ninomiya T., Takimoto H., Matsuzaki G., Hamano S., Yoshida H., Yoshikai Y., Kimura G., Nomoto K. 2000; V γ 1+ γδ T cells play protective roles at an early phase of murine cytomegalovirus infection through production of interferon- γ . Immunology 99:187–194 [CrossRef]
    [Google Scholar]
  23. Prlic M., Gibbs J., Jameson S. C. 2005; Characteristics of NK cell migration early after vaccinia infection. J Immunol 175:2152–2157 [CrossRef]
    [Google Scholar]
  24. Pütz M. M., Alberini I., Midgley C. M., Manini I., Montomoli E., Smith G. L. 2005; Prevalence of antibodies to Vaccinia virus after smallpox vaccination in Italy. J Gen Virol 86:2955–2960 [CrossRef]
    [Google Scholar]
  25. Reading P. C., Smith G. L. 2003; A kinetic analysis of immune mediators in the lungs of mice infected with vaccinia virus and comparison with intradermal infection. J Gen Virol 84:1973–1983 [CrossRef]
    [Google Scholar]
  26. Rock M. T., Yoder S. M., Wright P. F., Talbot T. R., Edwards K. M., Crowe J. E., Jr. 2005; Differential regulation of granzyme and perforin in effector and memory T cells following smallpox immunization. J Immunol 174:3757–3764 [CrossRef]
    [Google Scholar]
  27. Selin L. K., Santolucito P. A., Pinto A. K., Szomolanyi-Tsuda E., Welsh R. M. 2001; Innate immunity to viruses: control of vaccinia virus infection by γδ T cells. J Immunol 166:6784–6794 [CrossRef]
    [Google Scholar]
  28. Slifka M. K., Pagarigan R. R., Whitton J. L. 2000; NK markers are expressed on a high percentage of virus-specific CD8+ and CD4+ T cells. J Immunol 164:2009–2015 [CrossRef]
    [Google Scholar]
  29. Smith G. L., Mackett M., Moss B. 1983; Infectious vaccinia virus recombinants that express hepatitis B virus surface antigen. Nature 302:490–495 [CrossRef]
    [Google Scholar]
  30. Smith G. L., Symons J. A., Khanna A., Vanderplasschen A., Alcami A. 1997; Vaccinia virus immune evasion. Immunol Rev 159:137–154 [CrossRef]
    [Google Scholar]
  31. Symons J. A., Adams E., Tscharke D. C., Reading P. C., Waldmann H., Smith G. L. 2002; The vaccinia virus C12L protein inhibits mouse IL-18 and promotes virus virulence in the murine intranasal model. J Gen Virol 83:2833–2844
    [Google Scholar]
  32. Tscharke D. C., Smith G. L. 1999; A model for vaccinia virus pathogenesis and immunity based on intradermal injection of mouse ear pinnae. J Gen Virol 80:2751–2755
    [Google Scholar]
  33. Tscharke D. C., Reading P. C., Smith G. L. 2002; Dermal infection with vaccinia virus reveals roles for virus proteins not seen using other inoculation routes. J Gen Virol 83:1977–1986
    [Google Scholar]
  34. Wang T., Scully E., Yin Z. & 7 other authors 2003; IFN- γ -producing γδ T cells help control murine West Nile virus infection. J Immunol 171:2524–2531 [CrossRef]
    [Google Scholar]
  35. Wilcock D., Duncan S. A., Traktman P., Zhang W.-H., Smith G. L. 1999; The vaccinia virus A40R gene product is a nonstructural, type II membrane glycoprotein that is expressed at the cell surface. J Gen Virol 80:2137–2148
    [Google Scholar]
  36. Xu R., Johnson A. J., Liggitt D., Bevan M. J. 2004; Cellular and humoral immunity against vaccinia virus infection of mice. J Immunol 172:6265–6271 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81556-0
Loading
/content/journal/jgv/10.1099/vir.0.81556-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error