1887

Abstract

The replicase polyproteins, pp1a and pp1ab, of porcine (TGEV) have been predicted to be cleaved by viral proteases into 16 non-structural proteins (nsp). Here, enzymic activities residing in the amino-proximal region of nsp3, the largest TGEV replicase processing product, were characterized. It was shown, by translation experiments and protein sequencing, that the papain-like protease 1, PL1, but not a mutant derivative containing a substitution of the presumed active-site nucleophile, Cys, cleaves the nsp2|nsp3 site at Gly|Gly. By using an antiserum raised against the pp1a/pp1ab residues 526–713, the upstream processing product, nsp2, was identified as an 85 kDa protein in TGEV-infected cells. Furthermore, PL1 was confirmed to be flanked at its C terminus by a domain (called X) that mediates ADP-ribose 1″-phosphatase activity. Expression and characterization of a range of bacterially expressed forms of this enzyme suggest that the active X domain comprises pp1a/pp1ab residues Asp–Ser.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81596-0
2006-03-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/3/651.html?itemId=/content/journal/jgv/10.1099/vir.0.81596-0&mimeType=html&fmt=ahah

References

  1. Almazán F., Galán C., Enjuanes L. 2004; The nucleoprotein is required for efficient coronavirus genome replication. J Virol 78:12683–12688 [CrossRef]
    [Google Scholar]
  2. Anand K., Palm G. J., Mesters J. R., Siddell S. G., Ziebuhr J., Hilgenfeld R. 2002; Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra α -helical domain. EMBO J 21:3213–3224 [CrossRef]
    [Google Scholar]
  3. Anand K., Ziebuhr J., Wadhwani P., Mesters J. R., Hilgenfeld R. 2003; Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 300:1763–1767 [CrossRef]
    [Google Scholar]
  4. Bhardwaj K., Guarino L., Kao C. C. 2004; The severe acute respiratory syndrome coronavirus Nsp15 protein is an endoribonuclease that prefers manganese as a cofactor. J Virol 78:12218–12224 [CrossRef]
    [Google Scholar]
  5. Bonilla P. J., Hughes S. A., Weiss S. R. 1997; Characterization of a second cleavage site and demonstration of activity in trans by the papain-like proteinase of the murine coronavirus mouse hepatitis virus strain A59. J Virol 71:900–909
    [Google Scholar]
  6. Brierley I., Boursnell M. E. G., Binns M. M., Bilimoria B., Blok V. C., Brown T. D. K., Inglis S. C. 1987; An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J 6:3779–3785
    [Google Scholar]
  7. Dong S., Baker S. C. 1994; Determinants of the p28 cleavage site recognized by the first papain-like cysteine proteinase of murine coronavirus. Virology 204:541–549 [CrossRef]
    [Google Scholar]
  8. Draker R., Roper R. L., Petric M., Tellier R. 2006; The complete sequence of the bovine torovirus genome. Virus Res 115:56–68 [CrossRef]
    [Google Scholar]
  9. Eleouet J.-F., Rasschaert D., Lambert P., Levy L., Vende P., Laude H. 1995; Complete sequence (20 kilobases) of the polyprotein-encoding gene 1 of transmissible gastroenteritis virus. Virology 206:817–822 [CrossRef]
    [Google Scholar]
  10. Genschik P., Hall J., Filipowicz W. 1997; Cloning and characterization of the Arabidopsis cyclic phosphodiesterase which hydrolyzes ADP-ribose 1″,2″-cyclic phosphate and nucleoside 2′,3′-cyclic phosphates. J Biol Chem 272:13211–13219 [CrossRef]
    [Google Scholar]
  11. González J. M., Gomez-Puertas P., Cavanagh D., Gorbalenya A. E., Enjuanes L. 2003; A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae . Arch Virol 148:2207–2235 [CrossRef]
    [Google Scholar]
  12. Gorbalenya A. E., Koonin E. V., Donchenko A. P., Blinov V. M. 1989; Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis. Nucleic Acids Res 17:4847–4861 [CrossRef]
    [Google Scholar]
  13. Gorbalenya A. E., Koonin E. V., Lai M. M. C. 1991; Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, α - and coronaviruses. FEBS Lett 288:201–205 [CrossRef]
    [Google Scholar]
  14. Harcourt B. H., Jukneliene D., Kanjanahaluethai A., Bechill J., Severson K. M., Smith C. M., Rota P. A., Baker S. C. 2004; Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. J Virol 78:13600–13612 [CrossRef]
    [Google Scholar]
  15. Hegyi A., Ziebuhr J. 2002; Conservation of substrate specificities among coronavirus main proteases. J Gen Virol 83:595–599
    [Google Scholar]
  16. Herold J., Gorbalenya A. E., Thiel V., Schelle B., Siddell S. G. 1998; Proteolytic processing at the amino terminus of human coronavirus 229E gene 1-encoded polyproteins: identification of a papain-like proteinase and its substrate. J Virol 72:910–918
    [Google Scholar]
  17. Herold J., Siddell S. G., Gorbalenya A. E. 1999; A human RNA viral cysteine proteinase that depends upon a unique Zn2+-binding finger connecting the two domains of a papain-like fold. J Biol Chem 274:14918–14925 [CrossRef]
    [Google Scholar]
  18. Ivanov K. A., Ziebuhr J. 2004; Human coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5′-triphosphatase activities. J Virol 78:7833–7838 [CrossRef]
    [Google Scholar]
  19. Ivanov K. A., Hertzig T., Rozanov M., Bayer S., Thiel V., Gorbalenya A. E., Ziebuhr J. 2004a; Major genetic marker of nidoviruses encodes a replicative endoribonuclease. Proc Natl Acad Sci U S A 101:12694–12699 [CrossRef]
    [Google Scholar]
  20. Ivanov K. A., Thiel V., Dobbe J. C., van der Meer Y., Snijder E. J., Ziebuhr J. 2004b; Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J Virol 78:5619–5632 [CrossRef]
    [Google Scholar]
  21. Kanjanahaluethai A., Baker S. C. 2000; Identification of mouse hepatitis virus papain-like proteinase 2 activity. J Virol 74:7911–7921 [CrossRef]
    [Google Scholar]
  22. Karras G. I., Kustatscher G., Buhecha H. R., Allen M. D., Pugieux C., Sait F., Bycroft M., Ladurner A. G. 2005; The macro domain is an ADP-ribose binding module. EMBO J 24:1911–1920 [CrossRef]
    [Google Scholar]
  23. Lim K. P., Liu D. X. 1998; Characterization of the two overlapping papain-like proteinase domains encoded in gene 1 of the coronavirus infectious bronchitis virus and determination of the C-terminal cleavage site of an 87-kDa protein. Virology 245:303–312 [CrossRef]
    [Google Scholar]
  24. Lim K. P., Ng L. F. P., Liu D. X. 2000; Identification of a novel cleavage activity of the first papain-like proteinase domain encoded by open reading frame 1a of the coronavirus Avian infectious bronchitis virus and characterization of the cleavage products. J Virol 74:1674–1685 [CrossRef]
    [Google Scholar]
  25. Lu Y., Lu X., Denison M. R. 1995; Identification and characterization of a serine-like proteinase of the murine coronavirus MHV-A59. J Virol 69:3554–3559
    [Google Scholar]
  26. Putics Á., Filipowicz W., Hall J., Gorbalenya A. E., Ziebuhr J. 2005; ADP-ribose-1″-monophosphatase: a conserved coronavirus enzyme that is dispensable for viral replication in tissue culture. J Virol 79:12721–12731 [CrossRef]
    [Google Scholar]
  27. Sawicki S. G., Sawicki D. L. 1995; Coronaviruses use discontinuous extension for synthesis of subgenome-length negative strands. Adv Exp Med Biol 380:499–506
    [Google Scholar]
  28. Sawicki S. G., Sawicki D. L. 1998; A new model for coronavirus transcription. Adv Exp Med Biol 440:215–219
    [Google Scholar]
  29. Schelle B., Karl N., Ludewig B., Siddell S. G., Thiel V. 2005; Selective replication of coronavirus genomes that express nucleocapsid protein. J Virol 79:6620–6630 [CrossRef]
    [Google Scholar]
  30. Seybert A., Hegyi A., Siddell S. G., Ziebuhr J. 2000; The human coronavirus 229E superfamily 1 helicase has RNA and DNA duplex-unwinding activities with 5′-to-3′ polarity. RNA 6:1056–1068 [CrossRef]
    [Google Scholar]
  31. Shi S. T., Lai M. M. C. 2005; Viral and cellular proteins involved in coronavirus replication. Curr Top Microbiol Immunol 287:95–131
    [Google Scholar]
  32. Siddell S. G., Ziebuhr J., Snijder E. J. 2005; Coronaviruses, toroviruses, and arteriviruses. In Topley and Wilson's Microbiology and Microbial Infections , 10th edn. pp  823–856 Edited by Mahy B. W. J, ter Meulen V. London: Hodder Arnold;
    [Google Scholar]
  33. Snijder E. J., Bredenbeek P. J., Dobbe J. C. & 7 other authors 2003; Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331:991–1004 [CrossRef]
    [Google Scholar]
  34. Thiel V., Ivanov K. A., Putics Á. & 9 other authors 2003; Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol 84:2305–2315 [CrossRef]
    [Google Scholar]
  35. van der Hoek L., Pyrc K., Jebbink M. F. & 7 other authors 2004; Identification of a new human coronavirus. Nat Med 10:368–373 [CrossRef]
    [Google Scholar]
  36. Ziebuhr J. 2005; The coronavirus replicase. Curr Top Microbiol Immunol 287:57–94
    [Google Scholar]
  37. Ziebuhr J., Siddell S. G. 1999; Processing of the human coronavirus 229E replicase polyproteins by the virus-encoded 3C-like proteinase: identification of proteolytic products and cleavage sites common to pp1a and pp1ab. J Virol 73:177–185
    [Google Scholar]
  38. Ziebuhr J., Herold J., Siddell S. G. 1995; Characterization of a human coronavirus (strain 229E) 3C-like proteinase activity. J Virol 69:4331–4338
    [Google Scholar]
  39. Ziebuhr J., Snijder E. J., Gorbalenya A. E. 2000; Virus-encoded proteinases and proteolytic processing in the Nidovirales . J Gen Virol 81:853–879
    [Google Scholar]
  40. Ziebuhr J., Thiel V., Gorbalenya A. E. 2001; The autocatalytic release of a putative RNA virus transcription factor from its polyprotein precursor involves two paralogous papain-like proteases that cleave the same peptide bond. J Biol Chem 276:33220–33232 [CrossRef]
    [Google Scholar]
  41. Zúñiga S., Sola I., Alonso S., Enjuanes L. 2004; Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis. J Virol 78:980–994 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81596-0
Loading
/content/journal/jgv/10.1099/vir.0.81596-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error