1887

Abstract

Adenovirus (Ad) vectors are used widely for experimental and therapeutic gene transfer. Ad-mediated gene delivery is often inefficient and, thus, there is considerable interest in developing Ad vectors that overcome biological barriers to efficient virus uptake. For this strategy to succeed, it is imperative that the interaction between such Ad vectors and their novel receptors is well understood. In this study, three surface-exposed loops (HI, CD and IJ loops) on the Ad5 fiber knob domain were selected as sites for insertion of an v3 integrin-binding RGD sequence. Three RGD-containing Ad5 fiber knob-domain mutants were produced as recombinant proteins and all were shown to interact with soluble v3 integrin by using biomolecular cell-free assays. Cell adsorption and subsequent internalization and intracellular trafficking of each of these proteins were assessed by confocal microscopy. Whilst the Ad5 fiber knob domain expressing the RGD sequence in the HI and CD loops bound with similar association and dissociation profiles, the fiber knob domain expressing the RGD sequence in the IJ loop bound with slower association and faster dissociation rates. By using molecular modelling, it was shown that the Ad5 fiber knob domain in which the RGD peptide was expressed in the IJ loop was only capable of binding to one v3 integrin molecule per trimer. In contrast, fiber knob domains in which the RGD peptide was expressed in the HI and CD loops were capable of binding to one integrin molecule per monomer. These differences in the interactions between each mutant and v3 may explain our observation that the three RGD-bearing Ad5 fiber knob domains demonstrated similar internalization rates, but distinct patterns of endosomal transport and escape.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81620-0
2006-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/9/2497.html?itemId=/content/journal/jgv/10.1099/vir.0.81620-0&mimeType=html&fmt=ahah

References

  1. Bergelson M. J., Cunningham J. A., Droguett G., Kurt-Jones E. A., Ktithivas A., Hong J. S., Horwitz M. S., Crowell R. L., Finberg R. W. 1997; Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323 [CrossRef]
    [Google Scholar]
  2. Bewley M. C., Springer K., Zhang Y.-B., Freimuth P., Flanagan J. M. 1999; Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science 286:1579–1583 [CrossRef]
    [Google Scholar]
  3. Chiu C. Y., Mathias P., Nemerow G. R., Stewart P. L. 1999; Structure of adenovirus complexed with its internalization receptor, α v β 5 integrin. J Virol 73:6759–6768
    [Google Scholar]
  4. Curiel D. T. 1999a; Considerations and challenges for the achievement of targeted gene delivery. Gene Ther 6:1497–1498 [CrossRef]
    [Google Scholar]
  5. Curiel D. T. 1999b; Strategies to adapt adenoviral vectors for targeted delivery. Ann N Y Acad Sci 886:158–171 [CrossRef]
    [Google Scholar]
  6. Curiel D. T. 2000; Rational design of viral vectors based on rigorous analysis of capsid structures. Mol Ther 1:3–4 [CrossRef]
    [Google Scholar]
  7. Davison E., Diaz R. M., Hart I. R., Santis G., Marshall J. F. 1997; Integrin α 5 β 1-mediated adenovirus infection is enhanced by the integrin-activating antibody TS2/16. J Virol 71:6204–6207
    [Google Scholar]
  8. Davison E., Kirby I., Whitehouse J., Hart I., Marshall J. F., Santis G. 2001; Adenovirus type 5 uptake by lung adenocarcinoma cells in culture correlates with Ad5 fibre binding is mediated by α v β 1 integrin and can be modulated by changes in β 1 integrin function. J Gene Med 3:550–559 [CrossRef]
    [Google Scholar]
  9. Dmitriev I., Krasnykh V., Miller C. R., Wang M., Kashentseva E., Mikheeva G., Belousova N., Curiel D. T. 1998; An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol 72:9706–9713
    [Google Scholar]
  10. Greber U. F. 2002; Signalling in viral entry. Cell Mol Life Sci 59:608–626 [CrossRef]
    [Google Scholar]
  11. Greber U. F., Willetts M., Webster P., Helenius A. 1993; Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75:477–486 [CrossRef]
    [Google Scholar]
  12. Greber U. F., Singh I., Helenius A. 1994; Mechanisms of virus uncoating. Trends Microbiol 2:52–56 [CrossRef]
    [Google Scholar]
  13. Kirby I., Davison E., Beavil A. J., Soh C. P. C., Wickham T. J., Roelvink P. W., Kovesdi I., Sutton B. J., Santis G. 1999; Mutations in the DG loop of adenovirus type 5 fiber knob protein abolish high-affinity binding to its cellular receptor CAR. J Virol 73:9508–9514
    [Google Scholar]
  14. Kirby I., Davison E., Beavil A. J., Soh C. P. C., Wickham T. J., Roelvink P. W., Kovesdi I., Sutton B. J., Santis G. 2000; Identification of contact residues and definition of the CAR-binding site of adenovirus type 5 fiber protein. J Virol 74:2804–2813 [CrossRef]
    [Google Scholar]
  15. Kirby I., Lord R., Davison E., Wickham T. J., Roelvink P. W., Kovesdi I., Sutton B. J., Santis G. 2001; Adenovirus type 9 fiber knob binds to the coxsackie B virus-adenovirus receptor (CAR) with lower affinity than fiber knobs of other CAR-binding adenovirus serotypes. J Virol 75:7210–7214 [CrossRef]
    [Google Scholar]
  16. Leopold P. L., Kreitzer G., Miyazawa N., Rempel S., Pfister K. K., Rodriguez-Boulan E., Crystal R. G. 2000; Dynein- and microtubule-mediated translocation of adenovirus serotype 5 occurs after endosomal lysis. Hum Gene Ther 11:151–165 [CrossRef]
    [Google Scholar]
  17. Li E., Brown S. L., Stupack D. G., Puente X. S., Cheresh D. A., Nemerow G. R. 2001; Integrin α v β 1 is an adenovirus coreceptor. J Virol 75:5405–5409 [CrossRef]
    [Google Scholar]
  18. Martin-Fernandez M., Longshaw S. V., Kirby I., Santis G., Tobin M., Clarke D. T., Jones G. R. 2004; Adenovirus type 5 entry and disassembly followed in living cells by FRET, fluorescence anisotropy and FLIM. Biophys J 87:1316–1327 [CrossRef]
    [Google Scholar]
  19. Martí-Renom M. A., Stote R. H., Querol E., Aviles F. X., Karplus M. 2000; Structures of scrambled disulfide forms of the potato carboxypeptidase inhibitor predicted by molecular dynamics simulations with constraints. Proteins 40:482–493 [CrossRef]
    [Google Scholar]
  20. Mathias P., Wickham T., Moore M., Nemerow G. 1994; Multiple adenovirus serotypes use α v integrins for infection. J Virol 68:6811–6814
    [Google Scholar]
  21. Miyazawa N., Leopold P. L., Hackett N. R., Ferris B., Worgall S., Falck-Pedersen E., Crystal R. G. 1999; Fiber swap between adenovirus subgroups B and C alters intracellular trafficking of adenovirus gene transfer vectors. J Virol 73:6056–6065
    [Google Scholar]
  22. Miyazawa N., Crystal R. G., Leopold P. L. 2001; Adenovirus serotype 7 retention in a late endosomal compartment prior to cytosol escape is modulated by fiber protein. J Virol 75:1387–1400 [CrossRef]
    [Google Scholar]
  23. Reynolds P. N., Zinn K. R., Gavrilyuk V. D. & 9 other authors 2000; A targetable, injectable adenoviral vector for selective gene delivery to pulmonary endothelium in vivo . Mol Ther 2:562–578 [CrossRef]
    [Google Scholar]
  24. Roelvink P. W., Mi Lee G., Einfeld D. A., Kovesdi I., Wickham T. J. 1999; Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science 286:1568–1571 [CrossRef]
    [Google Scholar]
  25. Shayakhmetov D. M., Lieber A. 2000; Dependence of adenovirus infectivity on length of the fiber shaft domain. J Virol 74:10274–10286 [CrossRef]
    [Google Scholar]
  26. Shayakhmetov D. M., Li Z.-Y., Ternovoi V., Gaggar A., Gharwan H., Lieber A. 2003; The interaction between the fiber knob domain and the cellular attachment receptor determines the intracellular trafficking route of adenoviruses. J Virol 77:3712–3723 [CrossRef]
    [Google Scholar]
  27. Shayakhmetov D. M., Eberly A. M., Li Z.-Y., Lieber A. 2005; Deletion of penton RGD motifs affects the efficiency of both the internalization and the endosome escape of viral particles containing adenovirus serotype 5 or 35 fiber knobs. J Virol 79:1053–1061 [CrossRef]
    [Google Scholar]
  28. Takagi J., Petre B. M., Walz T., Springer T. A. 2002; Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 110:599–611 [CrossRef]
    [Google Scholar]
  29. Torshin I. Y. 2002; Structural criteria of biologically active RGD-sites for analysis of protein cellular function – a bioinformatics study. Med Sci Monit 8:BR301–BR312
    [Google Scholar]
  30. Wickham T. J., Mathias P., Cheresh D. A., Nemerow G. R. 1993; Integrins α v β 3 and α v β 5 promote adenovirus internalization but not virus attachment. Cell 73:309–319 [CrossRef]
    [Google Scholar]
  31. Wu E., Pache L., Von Seggern D. J., Mullen T.-M., Mikyas Y., Stewart P. L., Nemerow G. R. 2003; Flexibility of the adenovirus fiber is required for efficient receptor interaction. J Virol 77:7225–7235 [CrossRef]
    [Google Scholar]
  32. Xia D., Henry L. J., Gerard R. D., Deisenhofer J. 1994; Crystal structure of the receptor-binding domain of adenovirus type 5 fiber protein at 1.7 Å resolution. Structure 2:1259–1270 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81620-0
Loading
/content/journal/jgv/10.1099/vir.0.81620-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error