1887

Abstract

Infection of human cells with modified vaccinia virus Ankara (MVA) activates the typical cascade-like pattern of viral early-, intermediate- and late-gene expression. In contrast, infection of human HeLa cells with MVA deleted of the E3L gene (MVA-ΔE3L) results in high-level synthesis of intermediate RNA, but lacks viral late transcription. The viral E3 protein is thought to bind double-stranded RNA (dsRNA) and to act as an inhibitor of dsRNA-activated 2′-5′-oligoadenylate synthetase (2′-5′OA synthetase)/RNase L and protein kinase (PKR). Here, it is demonstrated that viral intermediate RNA can form RNase A/T1-resistant dsRNA, suggestive of activating both the 2′-5′OA synthetase/RNase L pathway and PKR in various human cell lines. Western blot analysis revealed that failure of late transcription in the absence of E3L function resulted from the deficiency to produce essential viral intermediate proteins, as demonstrated for vaccinia late transcription factor 2 (VLTF 2). Substantial host cell-specific differences were found in the level of activation of either RNase L or PKR. However, both rRNA degradation and phosphorylation of eukaryotic translation initiation factor-2 (eIF2) inhibited the synthesis of VLTF 2 in human cells. Moreover, intermediate VLTF 2 and late-protein production were restored in MVA-ΔE3L-infected mouse embryonic fibroblasts from mice. Thus, both host-response pathways may be involved, but activity of PKR is sufficient to block the MVA molecular life cycle. These data imply that an essential function of vaccinia virus E3L is to secure translation of intermediate RNA and, thereby, expression of other viral genes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81623-0
2006-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/5/1145.html?itemId=/content/journal/jgv/10.1099/vir.0.81623-0&mimeType=html&fmt=ahah

References

  1. Antoine G., Scheiflinger F., Dorner F., Falkner F. G. 1998; The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 244:365–396 [CrossRef]
    [Google Scholar]
  2. Baglioni C., De Benedetti A., Williams G. J. 1984; Cleavage of nascent reovirus mRNA by localized activation of the 2′-5′-oligoadenylate-dependent endoribonuclease. J Virol 52:865–871
    [Google Scholar]
  3. Baldick C. J. Jr, Moss B. 1993; Characterization and temporal regulation of mRNAs encoded by vaccinia virus intermediate-stage genes. J Virol 67:3515–3527
    [Google Scholar]
  4. Beattie E., Tartaglia J., Paoletti E. 1991; Vaccinia virus-encoded eIF-2 α homolog abrogates the antiviral effect of interferon. Virology 183:419–422 [CrossRef]
    [Google Scholar]
  5. Beattie E., Paoletti E., Tartaglia J. 1995; Distinct patterns of IFN sensitivity observed in cells infected with vaccinia K3L and E3L mutant viruses. Virology 210:254–263 [CrossRef]
    [Google Scholar]
  6. Beattie E., Kauffman E. B., Martinez H., Perkus M. E., Jacobs B. L., Paoletti E., Tartaglia J. 1996; Host-range restriction of vaccinia virus E3L-specific deletion mutants. Virus Genes 12:89–94 [CrossRef]
    [Google Scholar]
  7. Blanchard T. J., Alcamí A., Andrea P., Smith G. L. 1998; Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: implications for use as a human vaccine. J Gen Virol 79:1159–1167
    [Google Scholar]
  8. Boone R. F., Parr R. P., Moss B. 1979; Intermolecular duplexes formed from polyadenylylated vaccinia virus RNA. J Virol 30:365–374
    [Google Scholar]
  9. Born T. L., Morrison L. A., Esteban D. J., VandenBos T., Thebeau L. G., Chen N., Spriggs M. K., Sims J. E., Buller R. M. L. 2000; A poxvirus protein that binds to and inactivates IL-18, and inhibits NK cell response. J Immunol 164:3246–3254 [CrossRef]
    [Google Scholar]
  10. Boukamp P., Petrussevska R. T., Breitkreutz D., Hornung J., Markham A., Fusenig N. E. 1988; Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771 [CrossRef]
    [Google Scholar]
  11. Brandt T. A., Jacobs B. L. 2001; Both carboxy- and amino-terminal domains of the vaccinia virus interferon resistance gene, E3L, are required for pathogenesis in a mouse model. J Virol 75:850–856 [CrossRef]
    [Google Scholar]
  12. Brandt T., Heck M. C., Vijaysri S., Jentarra G. M., Cameron J. M., Jacobs B. L. 2005; The N-terminal domain of the vaccinia virus E3L-protein is required for neurovirulence, but not induction of a protective immune response. Virology 333:263–270 [CrossRef]
    [Google Scholar]
  13. Broyles S. S. 2003; Vaccinia virus transcription. J Gen Virol 84:2293–2303 [CrossRef]
    [Google Scholar]
  14. Carroll M. W., Moss B. 1997; Host range and cytopathogenicity of the highly attenuated MVA strain of vaccinia virus: propagation and generation of recombinant viruses in a nonhuman mammalian cell line. Virology 238:198–211 [CrossRef]
    [Google Scholar]
  15. Carroll K., Elroy-Stein O., Moss B., Jagus R. 1993; Recombinant vaccinia virus K3L gene product prevents activation of double-stranded RNA-dependent, initiation factor 2 α -specific protein kinase. J Biol Chem 268:12837–12842
    [Google Scholar]
  16. Chang H.-W., Jacobs B. L. 1993; Identification of a conserved motif that is necessary for binding of the vaccinia virus E3L gene products to double-stranded RNA. Virology 194:537–547 [CrossRef]
    [Google Scholar]
  17. Chang H.-W., Watson J. C., Jacobs B. L. 1992; The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. Proc Natl Acad Sci U S A 89:4825–4829 [CrossRef]
    [Google Scholar]
  18. Chang H.-W., Uribe L. H., Jacobs B. L. 1995; Rescue of vaccinia virus lacking the E3L gene by mutants of E3L. J Virol 69:6605–6608
    [Google Scholar]
  19. Clemens M. J., Elia A. 1997; The double-stranded RNA-dependent protein kinase PKR: structure and function. J Interferon Cytokine Res 17:503–524 [CrossRef]
    [Google Scholar]
  20. Colby C., Duesberg P. H. 1969; Double-stranded RNA in vaccinia virus infected cells. Nature 222:940–944 [CrossRef]
    [Google Scholar]
  21. Colby C., Jurale C., Kates J. R. 1971; Mechanism of synthesis of vaccinia virus double-stranded ribonucleic acid in vivo and in vitro. J Virol 7:71–76
    [Google Scholar]
  22. Condit R. C., Niles E. G. 2002; Regulation of viral transcription elongation and termination during vaccinia virus infection. Biochim Biophys Acta 1577:325–336 [CrossRef]
    [Google Scholar]
  23. Cooper J. A., Wittek R., Moss B. 1981; Extension of the transcriptional and translational map of the left end of the vaccinia virus genome to 21 kilobase pairs. J Virol 39:733–745
    [Google Scholar]
  24. Czerny C.-P., Johann S., Hölzle L., Meyer H. 1994; Epitope detection in the envelope of intracellular naked orthopox viruses and identification of encoding genes. Virology 200:764–777 [CrossRef]
    [Google Scholar]
  25. Davies M. V., Elroy-Stein O., Jagus R., Moss B., Kaufman R. J. 1992; The vaccinia virus K3L gene product potentiates translation by inhibiting double-stranded-RNA-activated protein kinase and phosphorylation of the alpha subunit of eukaryotic initiation factor 2. J Virol 66:1943–1950
    [Google Scholar]
  26. Díaz-Guerra M., Rivas C., Esteban M. 1997; Inducible expression of the 2-5A synthetase/RNase L system results in inhibition of vaccinia virus replication. Virology 227:220–228 [CrossRef]
    [Google Scholar]
  27. Drexler I., Heller K., Wahren B., Erfle V., Sutter G. 1998; Highly attenuated modified vaccinia virus Ankara replicates in baby hamster kidney cells, a potential host for virus propagation, but not in various human transformed and primary cells. J Gen Virol 79:347–352
    [Google Scholar]
  28. Drexler I., Staib C., Sutter G. 2004; Modified vaccinia virus Ankara as antigen delivery system: how can we best use its potential?. Curr Opin Biotechnol 15:506–512 [CrossRef]
    [Google Scholar]
  29. Floyd-Smith G., Slattery E., Lengyel P. 1981; Interferon action: RNA cleavage pattern of a (2′-5′)oligoadenylate-dependent endonuclease. Science 212:1030–1032 [CrossRef]
    [Google Scholar]
  30. García M. A., Guerra S., Gil J., Jimenez V., Esteban M. 2002; Anti-apoptotic and oncogenic properties of the dsRNA-binding protein of vaccinia virus, E3L. Oncogene 21:8379–8387 [CrossRef]
    [Google Scholar]
  31. Goodbourn S., Didcock L., Randall R. E. 2000; Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J Gen Virol 81:2341–2364
    [Google Scholar]
  32. Herbert A., Alfken J., Kim Y.-G., Mian I. S., Nishikura K., Rich A. 1997; A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase. Proc Natl Acad Sci U S A 94:8421–8426 [CrossRef]
    [Google Scholar]
  33. Ho C. K., Shuman S. 1996; Physical and functional characterization of the double-stranded RNA binding protein encoded by the vaccinia virus E3 gene. Virology 217:272–284 [CrossRef]
    [Google Scholar]
  34. Hornemann S., Harlin O., Staib C., Kisling S., Erfle V., Kaspers B., Häcker G., Sutter G. 2003; Replication of modified vaccinia virus Ankara in primary chicken embryo fibroblasts requires expression of the interferon resistance gene E3L. J Virol 77:8394–8407 [CrossRef]
    [Google Scholar]
  35. Jagus R., Gray M. M. 1994; Proteins that interact with PKR. Biochimie 76:779–791 [CrossRef]
    [Google Scholar]
  36. Kahmann J. D., Wecking D. A., Putter V., Lowenhaupt K., Kim Y.-G., Schmieder P., Oschkinat H., Rich A., Schade M. 2004; The solution structure of the N-terminal domain of E3L shows a tyrosine conformation that may explain its reduced affinity to Z-DNA in vitro . Proc Natl Acad Sci U S A 101:2712–2717 [CrossRef]
    [Google Scholar]
  37. Kato H., Sato S., Yoneyama M. & 8 other authors 2005; Cell type-specific involvement of RIG-I in antiviral response. Immunity 23:19–28 [CrossRef]
    [Google Scholar]
  38. Keck J. G., Baldick C. J. Jr, Moss B. 1990; Role of DNA replication in vaccinia virus gene expression: a naked template is required for transcription of three late trans -activator genes. Cell 61:801–809 [CrossRef]
    [Google Scholar]
  39. Keck J. G., Kovacs G. R., Moss B. 1993; Overexpression, purification, and late transcription factor activity of the 17-kilodalton protein encoded by the vaccinia virus A1L gene. J Virol 67:5740–5748
    [Google Scholar]
  40. Kerr I. M., Brown R. E. 1978; pppA2′p5′A2′p5′A: an inhibitor of protein synthesis synthesized with an enzyme fraction from interferon-treated cells. Proc Natl Acad Sci U S A 75:256–260 [CrossRef]
    [Google Scholar]
  41. Kim Y.-G., Muralinath M., Brandt T., Pearcy M., Hauns K., Lowenhaupt K., Jacobs B. L., Rich A. 2003; A role for Z-DNA binding in vaccinia virus pathogenesis. Proc Natl Acad Sci U S A 100:6974–6979 [CrossRef]
    [Google Scholar]
  42. Kim Y.-G., Lowenhaupt K., Oh D.-B., Kim K. K., Rich A. 2004; Evidence that vaccinia virulence factor E3L binds to Z-DNA in vivo : implications for development of a therapy for poxvirus infection. Proc Natl Acad Sci U S A 101:1514–1518 [CrossRef]
    [Google Scholar]
  43. Kumar R., Choubey D., Lengyel P., Sen G. C. 1988; Studies on the role of the 2′-5′-oligoadenylate synthetase-RNase L pathway in beta interferon-mediated inhibition of encephalomyocarditis virus replication. J Virol 62:3175–3181
    [Google Scholar]
  44. Langland J. O., Jacobs B. L. 2002; The role of the PKR-inhibitory genes, E3L and K3L, in determining vaccinia virus host range. Virology 299:133–141 [CrossRef]
    [Google Scholar]
  45. Langland J. O., Jacobs B. L. 2004; Inhibition of PKR by vaccinia virus: role of the N- and C-terminal domains of E3L. Virology 324:419–429 [CrossRef]
    [Google Scholar]
  46. Leitner W. W., Hwang L. N., deVeer M. J., Zhou A., Silverman R. H., Williams B. R. G., Dubensky T. W., Ying H., Restifo N. P. 2003; Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways. Nat Med 9:33–39
    [Google Scholar]
  47. Li X.-L., Blackford J. A., Hassel B. A. 1998; RNase L mediates the antiviral effect of interferon through a selective reduction in viral RNA during encephalomyocarditis virus infection. J Virol 72:2752–2759
    [Google Scholar]
  48. Ludwig H., Mages J., Staib C., Lehmann M. H., Lang R., Sutter G. 2005; Role of viral factor E3L in modified vaccinia virus Ankara infection of human HeLa cells: regulation of the virus life cycle and identification of differentially expressed host genes. J Virol 79:2584–2596 [CrossRef]
    [Google Scholar]
  49. Mahr A., Roberts B. E. 1984; Arrangement of late RNAs transcribed from a 7.1-kilobase Eco RI vaccinia virus DNA fragment. J Virol 49:510–520
    [Google Scholar]
  50. Mayr A., Hochstein-Mintzel V., Stickl H. 1975; Abstammung, Eigenschaften und Verwendung des attenuierten Vaccinia-Stammes MVA. Infection 3:6–14 (in German [CrossRef]
    [Google Scholar]
  51. Meyer H., Sutter G., Mayr A. 1991; Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence. J Gen Virol 72:1031–1038 [CrossRef]
    [Google Scholar]
  52. Moss B. 1990; Regulation of vaccinia virus transcription. Annu Rev Biochem 59:661–688 [CrossRef]
    [Google Scholar]
  53. Moss B., Shisler J. L. 2001; Immunology 101 at poxvirus U: immune evasion genes. Semin Immunol 13:59–66 [CrossRef]
    [Google Scholar]
  54. Patterson J. B., Samuel C. E. 1995; Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol Cell Biol 15:5376–5388
    [Google Scholar]
  55. Rivas C., Gil J., Mělková Z., Esteban M., Díaz-Guerra M. 1998; Vaccinia virus E3L protein is an inhibitor of the interferon (IFN)-induced 2-5A synthetase enzyme. Virology 243:406–414 [CrossRef]
    [Google Scholar]
  56. Rodriguez J. F., Paez E., Esteban M. 1987; A 14,000- M r envelope protein of vaccinia virus is involved in cell fusion and forms covalently linked trimers. J Virol 61:395–404
    [Google Scholar]
  57. Sanz P., Moss B. 1999; Identification of a transcription factor, encoded by two vaccinia virus early genes, that regulates the intermediate stage of viral gene expression. Proc Natl Acad Sci U S A 96:2692–2697 [CrossRef]
    [Google Scholar]
  58. Schulz O., Diebold S. S., Chen M. & 7 other authors 2005; Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433:887–892 [CrossRef]
    [Google Scholar]
  59. Shors T., Kibler K. V., Perkins K. B., Seidler-Wulff R., Banaszak M. P., Jacobs B. L. 1997; Complementation of vaccinia virus deleted of the E3L gene by mutants of E3L. Virology 239:269–276 [CrossRef]
    [Google Scholar]
  60. Shors S. T., Beattie E., Paoletti E., Tartaglia J., Jacobs B. L. 1998; Role of the vaccinia virus E3L and K3L gene products in rescue of VSV and EMCV from the effects of IFN-alpha. J Interferon Cytokine Res 18:721–729 [CrossRef]
    [Google Scholar]
  61. Silverman R. H., Cayley P. J., Knight M., Gilbert C. S., Kerr I. M. 1982; Control of the ppp(a2′p)nA system in HeLa cells. Effects of interferon and virus infection. Eur J Biochem 124:131–138 [CrossRef]
    [Google Scholar]
  62. Silverman R. H., Skehel J. J., James T. C., Wreschner D. H., Kerr I. M. 1983; rRNA cleavage as an index of ppp(A2′p)nA activity in interferon-treated encephalomyocarditis virus-infected cells. J Virol 46:1051–1055
    [Google Scholar]
  63. Smith V. P., Bryant N. A., Alcamí A. 2000; Ectromelia, vaccinia and cowpox viruses encode secreted interleukin-18-binding proteins. J Gen Virol 81:1223–1230
    [Google Scholar]
  64. Smith E. J., Marié I., Prakash A., García-Sastre A., Levy D. E. 2001; IRF3 and IRF7 phosphorylation in virus-infected cells does not require double-stranded RNA-dependent protein kinase R or I κ B kinase but is blocked by vaccinia virus E3L protein. J Biol Chem 276:8951–8957 [CrossRef]
    [Google Scholar]
  65. Staib C., Kisling S., Erfle V., Sutter G. 2005; Inactivation of the viral interleukin 1 β receptor improves CD8+ T-cell memory responses elicited upon immunization with modified vaccinia virus Ankara. J Gen Virol 86:1997–2006 [CrossRef]
    [Google Scholar]
  66. Stark G. R., Kerr I. M., Williams B. R. G., Silverman R. H., Schreiber R. D. 1998; How cells respond to interferons. Annu Rev Biochem 67:227–264 [CrossRef]
    [Google Scholar]
  67. Sutter G., Moss B. 1992; Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc Natl Acad Sci U S A 89:10847–10851 [CrossRef]
    [Google Scholar]
  68. Sutter G., Staib C. 2003; Vaccinia vectors as candidate vaccines: the development of modified vaccinia virus Ankara for antigen delivery. Curr Drug Targets Infect Disord 3:263–271 [CrossRef]
    [Google Scholar]
  69. Thomis D. C., Samuel C. E. 1993; Mechanism of interferon action: evidence for intermolecular autophosphorylation and autoactivation of the interferon-induced, RNA-dependent protein kinase PKR. J Virol 67:7695–7700
    [Google Scholar]
  70. Varich N. L., Sychova I. V., Kaverin N. V., Antonova T. P., Chernos V. I. 1979; Transcription of both DNA strands of vaccinia virus genome in vivo . Virology 96:412–430 [CrossRef]
    [Google Scholar]
  71. Vos J. C., Stunnenberg H. G. 1988; Derepression of a novel class of vaccinia virus genes upon DNA replication. EMBO J 7:3487–3492
    [Google Scholar]
  72. Watson J. C., Chang H.-W., Jacobs B. L. 1991; Characterization of a vaccinia virus-encoded double-stranded RNA-binding protein that may be involved in inhibition of the double-stranded RNA-dependent protein kinase. Virology 185:206–216 [CrossRef]
    [Google Scholar]
  73. Wreschner D. H., James T. C., Silverman R. H., Kerr I. M. 1981; Ribosomal RNA cleavage, nuclease activation and 2-5A (ppp(A2′p)nA) in interferon-treated cells. Nucleic Acids Res 9:1571–1581 [CrossRef]
    [Google Scholar]
  74. Xiang Y., Condit R. C., Vijaysri S., Jacobs B., Williams B. R. G., Silverman R. H. 2002; Blockade of interferon induction and action by the E3L double-stranded RNA binding proteins of vaccinia virus. J Virol 76:5251–5259 [CrossRef]
    [Google Scholar]
  75. Yang Y.-L., Reis L. F. L., Pavlovic J., Aguzzi A., Schafer R., Kumar A., Williams B. R. G., Aguet M., Weissmann C. 1995; Deficient signaling in mice devoid of double-stranded RNA-dependent protein kinase. EMBO J 14:6095–6106
    [Google Scholar]
  76. Yoneyama M., Kikuchi M., Natsukawa T., Shinobu N., Imaizumi T., Miyagishi M., Taira K., Akira S., Fujita T. 2004; The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5:730–737 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81623-0
Loading
/content/journal/jgv/10.1099/vir.0.81623-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error