1887

Abstract

Severe acute respiratory syndrome (SARS) of humans is caused by a novel coronavirus of zoonotic origin termed SARS-associated coronavirus (SARS-CoV). The virus induces severe injury of lung tissue, as well as lymphopenia and destruction of the architecture of lymphatic tissue by as-yet-unknown mechanisms. In this study, the interaction of SARS-CoV with dendritic cells (DCs), the key regulators of immune responses, was analysed. Monocyte-derived DCs were infected with SARS-CoV and analysed for viability, surface-marker expression and alpha interferon (IFN-) induction. SARS-CoV infection was monitored by quantitative RT-PCR, immunofluorescence analysis and recovery experiments. SARS-CoV infected both immature and mature DCs, although replication efficiency was low. Immature DCs were activated by SARS-CoV infection and by UV-inactivated SARS-CoV. Infected DCs were still viable on day 6 post-infection, but major histocompatibility complex class I upregulation was missing, indicating that DC function was impaired. Additionally, SARS-CoV infection induced a delayed activation of IFN- expression. Therefore, it is concluded that SARS-CoV has the ability to circumvent both the innate and the adaptive immune systems.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81624-0
2006-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/7/1953.html?itemId=/content/journal/jgv/10.1099/vir.0.81624-0&mimeType=html&fmt=ahah

References

  1. Alcami A., Koszinowski U. H. 2000; Viral mechanisms of immune evasion. Trends Microbiol 8:410–418 [CrossRef]
    [Google Scholar]
  2. Banchereau J., Steinman R. M. 1998; Dendritic cells and the control of immunity. Nature 392:245–252 [CrossRef]
    [Google Scholar]
  3. Beck K., Meyer-König U., Weidmann M., Nern C., Hufert F. T. 2003; Human cytomegalovirus impairs dendritic cell function: a novel mechanism of human cytomegalovirus immune escape. Eur J Immunol 33:1528–1538 [CrossRef]
    [Google Scholar]
  4. Cella M., Sallusto F., Lanzavecchia A. 1997; Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol 9:10–16 [CrossRef]
    [Google Scholar]
  5. Cella M., Salio M., Sakakibara Y., Langen H., Julkunen I., Lanzavecchia A. 1999; Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J Exp Med 189:821–829 [CrossRef]
    [Google Scholar]
  6. Cinatl J., Morgenstern B., Bauer G., Chandra P., Rabenau H., Doerr H. W. 2003; Treatment of SARS with human interferons. Lancet 362:293–294 [CrossRef]
    [Google Scholar]
  7. Collins A. R. 2002; In vitro detection of apoptosis in monocytes/macrophages infected with human coronavirus. Clin Diagn Lab Immunol 9:1392–1395
    [Google Scholar]
  8. Ding Y., Wang H., Shen H. & 11 other authors 2003; The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J Pathol 200:282–289 [CrossRef]
    [Google Scholar]
  9. Ding Y., He L., Zhang Q. & 15 other authors 2004; Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol 203:622–630 [CrossRef]
    [Google Scholar]
  10. Drosten C., Günther S., Preiser W. & 23 other authors 2003; Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348:1967–1976 [CrossRef]
    [Google Scholar]
  11. Fouchier R. A. M., Kuiken T., Schutten M. & 7 other authors 2003; Aetiology: Koch's postulates fulfilled for SARS virus. Nature 423:240 [CrossRef]
    [Google Scholar]
  12. Fuchizaki U., Kaneko S., Nakamoto Y., Sugiyama Y., Imagawa K., Kikuchi M., Kobayashi K. 2003; Synergistic antiviral effect of a combination of mouse interferon- α and interferon- γ on mouse hepatitis virus. J Med Virol 69:188–194 [CrossRef]
    [Google Scholar]
  13. Haagmans B. L., Kuiken T., Martina B. E. & 9 other authors 2004; Pegylated interferon- α protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat Med 10:290–293 [CrossRef]
    [Google Scholar]
  14. Han D. P., Kim H. G., Kim Y. B., Poon L. L. M., Cho M. W. 2004; Development of a safe neutralization assay for SARS-CoV and characterization of S-glycoprotein. Virology 326:140–149 [CrossRef]
    [Google Scholar]
  15. Hensley L. E., Fritz E. A., Jahrling P. B., Karp C. L., Huggins J. W., Geisbert T. W. 2004; Interferon- β 1a and SARS coronavirus replication. Emerg Infect Dis 10:317–319 [CrossRef]
    [Google Scholar]
  16. Highton J., Kean A., Hessian P. A., Thomson J., Rietveld J., Hart D. N. 2000; Cells expressing dendritic cell markers are present in the rheumatoid nodule. J Rheumatol 27:339–346
    [Google Scholar]
  17. Hock B. D., Fearnley D. B., Boyce A., McLellan A. D., Sorg R. V., Summers K. L., Hart D. N. 1999; Human dendritic cells express a 95 kDa activation/differentiation antigen defined by CMRF-56. Tissue Antigens 53:320–334 [CrossRef]
    [Google Scholar]
  18. Hofmann H., Pohlmann S. 2004; Cellular entry of the SARS coronavirus. Trends Microbiol 12:466–472 [CrossRef]
    [Google Scholar]
  19. Jeffers S. A., Tusell S. M., Gillim-Ross L. & 11 other authors 2004; CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A 101:15748–15753 [CrossRef]
    [Google Scholar]
  20. Kawamoto S., Oritani K., Asada H. & 9 other authors 2003; Antiviral activity of limitin against encephalomyocarditis virus, herpes simplex virus, and mouse hepatitis virus: diverse requirements by limitin and alpha interferon for interferon regulatory factor 1. J Virol 77:9622–9631 [CrossRef]
    [Google Scholar]
  21. Ksiazek T. G., Erdman D., Goldsmith C. S. & 23 other authors 2003; A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348:1953–1966 [CrossRef]
    [Google Scholar]
  22. Kuiken T., Fouchier R. A. M., Schutten M. & 19 other authors 2003; Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362:263–270 [CrossRef]
    [Google Scholar]
  23. Lang Z.-W., Zhang L.-J., Zhang S.-J., Meng X., Li J.-Q., Song C.-Z., Sun L., Zhou Y.-S., Dwyer D. E. 2003; A clinicopathological study of three cases of severe acute respiratory syndrome (SARS). Pathology 35:526–531 [CrossRef]
    [Google Scholar]
  24. Larrea E., Alberdi A., Castelruiz Y., Boya P., Civeira M.-P., Prieto J. 2001; Expression of interferon- α subtypes in peripheral mononuclear cells from patients with chronic hepatitis C: a role for interferon- α 5. J Viral Hepat 8:103–110 [CrossRef]
    [Google Scholar]
  25. Law H. K. W., Cheung C. Y., Ng H. Y., Sia S. F., Chan Y. O., Luk W., Nicholls J. M., Peiris J. S. M., Lau Y. L. 2005; Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood 106:2366–2374 [CrossRef]
    [Google Scholar]
  26. Li W., Moore M. J., Vasilieva N. & 9 other authors 2003; Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450–454 [CrossRef]
    [Google Scholar]
  27. Marzi A., Gramberg T., Simmons G. & 12 other authors 2004; DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J Virol 78:12090–12095 [CrossRef]
    [Google Scholar]
  28. Ng M. L., Tan S. H., See E. E., Ooi E. E., Ling A. E. 2003; Early events of SARS coronavirus infection in vero cells. J Med Virol 71:323–331 [CrossRef]
    [Google Scholar]
  29. Nicholls J. M., Poon L. L. M., Lee K. C. & 13 other authors 2003; Lung pathology of fatal severe acute respiratory syndrome. Lancet 361:1773–1778 [CrossRef]
    [Google Scholar]
  30. Pei J., Sekellick M. J., Marcus P. I., Choi I.-S., Collisson E. W. 2001; Chicken interferon type I inhibits infectious bronchitis virus replication and associated respiratory illness. J Interferon Cytokine Res 21:1071–1077 [CrossRef]
    [Google Scholar]
  31. Peiris J. S. M., Chu C. M., Cheng V. C. C. & 14 other authors 2003a; Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 361:1767–1772 [CrossRef]
    [Google Scholar]
  32. Peiris J. S. M., Lai S. T., Poon L. L. M. & 13 other authors (2003b). Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361:1319–1325 [CrossRef]
    [Google Scholar]
  33. Reghunathan R., Jayapal M., Hsu L.-Y., Chng H.-H., Tai D., Leung B. P., Melendez A. J. 2005; Expression profile of immune response genes in patients with severe acute respiratory syndrome. BMC Immunol 6:2 [CrossRef]
    [Google Scholar]
  34. Rinaldo C. R. Jr, Piazza P. 2004; Virus infection of dendritic cells: portal for host invasion and host defense. Trends Microbiol 12:337–345 [CrossRef]
    [Google Scholar]
  35. Sallusto F., Lanzavecchia A. 1994; Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α . J Exp Med 179:1109–1118 [CrossRef]
    [Google Scholar]
  36. Spiegel M., Pichlmair A., Mühlberger E., Haller O., Weber F. 2004; The antiviral effect of interferon-beta against SARS-coronavirus is not mediated by MxA protein. J Clin Virol 30:211–213 [CrossRef]
    [Google Scholar]
  37. Spiegel M., Pichlmair A., Martínez-Sobrido L., Cros J., García-Sastre A., Haller O., Weber F. 2005; Inhibition of beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3. J Virol 79:2079–2086 [CrossRef]
    [Google Scholar]
  38. Tseng C.-T. K., Perrone L. A., Zhu H., Makino S., Peters C. J. 2005; Severe acute respiratory syndrome and the innate immune responses: modulation of effector cell function without productive infection. J Immunol 174:7977–7985 [CrossRef]
    [Google Scholar]
  39. Weber F., Kochs G., Haller O. 2004; Inverse interference: how viruses fight the interferon system. Viral Immunol 17:498–515 [CrossRef]
    [Google Scholar]
  40. Weidmann M., Zanotto P. M. D. A., Weber F., Spiegel M., Brodt H. R., Hufert F. T. 2004; High-efficiency detection of severe acute respiratory syndrome virus genetic material. J Clin Microbiol 42:2771–2773 [CrossRef]
    [Google Scholar]
  41. WHO 2004; Summary of probable SARS cases with onset of illness from; 1 November 2002 to 31 July 2003 http://www.who.int/csr/sars/country/table2004_04_21/en/
  42. Yang Z.-Y., Huang Y., Ganesh L., Leung K., Kong W.-P., Schwartz O., Subbarao K., Nabel G. J. 2004; pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J Virol 78:5642–5650 [CrossRef]
    [Google Scholar]
  43. Ziegler T., Matikainen S., Rönkkö E. & 7 other authors 2005; Severe acute respiratory syndrome coronavirus fails to activate cytokine-mediated innate immune responses in cultured human monocyte-derived dendritic cells. J Virol 79:13800–13805 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81624-0
Loading
/content/journal/jgv/10.1099/vir.0.81624-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error