1887

Abstract

The hepatitis B virus core protein consists of an amino-terminal capsid-assembly domain and a carboxyl-terminal RNA-binding domain. By using the yeast two-hybrid system, two Hsp40/DnaJ chaperone-family proteins, Hdj1 and hTid1, that interact with the carboxyl-terminal region (aa 94–185) of the core protein were identified. Hdj1 is the prototype member of the family and hTid1 is the human homologue of the tumour-suppressor protein Tid56. Binding of the viral core protein with the Hsp40 proteins was confirmed by affinity chromatography and immunoprecipitation of transiently expressed proteins. Moreover, in a sucrose gradient, the precursor form of hTid1 co-sedimented with capsid-like particles composed of the full-length core protein. Unlike the general perception of the role of the cellular chaperone proteins in assisting viral protein folding and thus enhancing virus replication, ectopic expression of Hdj1 and hTid1 suppressed replication of HBV in transfected human hepatoma cells. Conversely, RNA interference-mediated knock-down of hTid1 resulted in increased HBV replication. It was found that both Hsp40 proteins specifically accelerated degradation of the viral core and HBx proteins. Our results suggest that the cellular chaperones, through destabilization of viral proteins, exert inhibitory functions on virus replication and hence may play suppressive roles in hepatocellular carcinoma.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81684-0
2006-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/7/1883.html?itemId=/content/journal/jgv/10.1099/vir.0.81684-0&mimeType=html&fmt=ahah

References

  1. Beck J., Nassal M. 2001; Reconstitution of a functional duck hepatitis B virus replication initiation complex from separate reverse transcriptase domains expressed in Escherichia coli . J Virol 75:7410–7419 [CrossRef]
    [Google Scholar]
  2. Beck J., Nassal M. 2003; Efficient Hsp90-independent in vitro activation by Hsc70 and Hsp40 of duck hepatitis B virus reverse transcriptase, an assumed Hsp90 client protein. J Biol Chem 278:36128–36138 [CrossRef]
    [Google Scholar]
  3. Canamasas I., Debes A., Natali P. G., Kurzik-Dumke U. 2003; Understanding human cancer using Drosophila : Tid47, a cytosolic product of the DnaJ -like tumor suppressor gene l(2)Tid , is a novel molecular partner of Patched related to skin cancer. J Biol Chem 278:30952–30960 [CrossRef]
    [Google Scholar]
  4. Cheetham M. E., Caplan A. J. 1998; Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3:28–36 [CrossRef]
    [Google Scholar]
  5. Cheng H., Cenciarelli C., Shao Z., Vidal M., Parks W. P., Pagano M., Cheng-Mayer C. 2001; Human T cell leukemia virus type 1 Tax associates with a molecular chaperone complex containing hTid-1 and Hsp70. Curr Biol 11:1771–1775 [CrossRef]
    [Google Scholar]
  6. Cheng H., Cenciarelli C., Tao M. Y., Parks W. P., Cheng-Mayer C. 2002; HTLV-1 Tax-associated hTid-1, a human DnaJ protein, is a repressor of I κ B kinase β subunit. J Biol Chem 277:20605–20610 [CrossRef]
    [Google Scholar]
  7. Cho G., Park S.-G., Jung G. 2000; Localization of Hsp90 binding sites in the human hepatitis B virus polymerase. Biochem Biophys Res Commun 269:191–196 [CrossRef]
    [Google Scholar]
  8. Cyr D. M., Langer T., Douglas M. G. 1994; DnaJ-like proteins: molecular chaperones and specific regulators of Hsp70. Trends Biochem Sci 19:176–181 [CrossRef]
    [Google Scholar]
  9. Eckhardt S. G., Milich D. R., McLachlan A. 1991; Hepatitis B virus core antigen has two nuclear localization sequences in the arginine-rich carboxyl terminus. J Virol 65:575–582
    [Google Scholar]
  10. Edwards K. M., Münger K. 2004; Depletion of physiological levels of the human TID1 protein renders cancer cell lines resistant to apoptosis mediated by multiple exogenous stimuli. Oncogene 23:8419–8431 [CrossRef]
    [Google Scholar]
  11. Eom C. Y., Lehman I. R. 2002; The human DnaJ protein, hTid-1, enhances binding of a multimer of the herpes simplex virus type 1 UL9 protein to oris, an origin of viral DNA replication. Proc Natl Acad Sci U S A 99:1894–1898 [CrossRef]
    [Google Scholar]
  12. Fuerst T. R., Niles E. G., Studier F. W., Moss B. 1986; Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A 83:8122–8126 [CrossRef]
    [Google Scholar]
  13. Gallina A., Bonelli F., Zentilin L., Rindi G., Muttini M., Milanesi G. 1989; A recombinant hepatitis B core antigen polypeptide with the protamine-like domain deleted self-assembles into capsid particles but fails to bind nucleic acids. J Virol 63:4645–4652
    [Google Scholar]
  14. Ganem D., Schneider R. J. 2001; Hepadnaviridae : the viruses and their replication. In Fields Virology , 4th edn. vol 2 pp  2923–2969 Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  15. Glotzer J. B., Saltik M., Chiocca S., Michou A.-I., Moseley P., Cotten M. 2000; Activation of heat-shock response by an adenovirus is essential for virus replication. Nature 407:207–211 [CrossRef]
    [Google Scholar]
  16. Guidotti L. G., Matzke B., Schaller H., Chisari F. V. 1995; High-level hepatitis B virus replication in transgenic mice. J Virol 69:6158–6169
    [Google Scholar]
  17. Hatton T., Zhou S. L., Standring D. N. 1992; RNA- and DNA-binding activities in hepatitis B virus capsid protein: a model for their roles in viral replication. J Virol 66:5232–5241
    [Google Scholar]
  18. Hayes S. A., Dice J. F. 1996; Roles of molecular chaperones in protein degradation. J Cell Biol 132:255–258 [CrossRef]
    [Google Scholar]
  19. Hu J., Seeger C. 1996; Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase. Proc Natl Acad Sci U S A 93:1060–1064 [CrossRef]
    [Google Scholar]
  20. Hu J., Toft D. O., Seeger C. 1997; Hepadnavirus assembly and reverse transcription require a multi-component chaperone complex which is incorporated into nucleocapsids. EMBO J 16:59–68 [CrossRef]
    [Google Scholar]
  21. Hu Z., Zhang Z., Doo E., Coux O., Goldberg A. L., Liang T. J. 1999; Hepatitis B virus X protein is both a substrate and a potential inhibitor of the proteasome complex. J Virol 73:7231–7240
    [Google Scholar]
  22. Hu J., Toft D., Anselmo D., Wang X. 2002; In vitro reconstitution of functional hepadnavirus reverse transcriptase with cellular chaperone proteins. J Virol 76:269–279 [CrossRef]
    [Google Scholar]
  23. Kim J.-H., Kang S., Kim J., Ahn B.-Y. 2003; Hepatitis B virus core protein stimulates the proteasome-mediated degradation of viral X protein. J Virol 77:7166–7173 [CrossRef]
    [Google Scholar]
  24. Kim S.-W., Chao T.-H., Xiang R., Lo J.-F., Campbell M. J., Fearns C., Lee J.-D. 2004; Tid1, the human homologue of a Drosophila tumor suppressor, reduces the malignant activity of ErbB-2 in carcinoma cells. Cancer Res 64:7732–7739 [CrossRef]
    [Google Scholar]
  25. Koschel M., Oed D., Gerelsaikhan T., Thomssen R., Bruss V. 2000; Hepatitis B virus core gene mutations which block nucleocapsid envelopment. J Virol 74:1–7 [CrossRef]
    [Google Scholar]
  26. Lambert C., Prange R. 2003; Chaperone action in the posttranslational topological reorientation of the hepatitis B virus large envelope protein: implications for translocational regulation. Proc Natl Acad Sci U S A 100:5199–5204 [CrossRef]
    [Google Scholar]
  27. Lingappa J. R., Martin R. L., Wong M. L., Ganem D., Welch W. J., Lingappa V. R. 1994; A eukaryotic cytosolic chaperonin is associated with a high molecular weight intermediate in the assembly of hepatitis B virus capsid, a multimeric particle. J Cell Biol 125:99–111 [CrossRef]
    [Google Scholar]
  28. Lo J.-F., Hayashi M., Woo-Kim S. & 7 other authors 2004; Tid1, a cochaperone of the heat shock 70 protein and the mammalian counterpart of the Drosophila tumor suppressor 1(2)tid, is critical for early embryonic development and cell survival. Mol Cell Biol 24:2226–2236 [CrossRef]
    [Google Scholar]
  29. Ohtsuka K., Hata M. 2000; Molecular chaperone function of mammalian Hsp70 and Hsp40 – a review. Int J Hyperthermia 16:231–245 [CrossRef]
    [Google Scholar]
  30. Park S. G., Jung G. 2001; Human hepatitis B virus polymerase interacts with the molecular chaperonin Hsp60. J Virol 75:6962–6968 [CrossRef]
    [Google Scholar]
  31. Prange R., Werr M., Loffler-Mary H. 1999; Chaperones involved in hepatitis B virus morphogenesis. Biol Chem 380:305–314
    [Google Scholar]
  32. Roossinck M. J., Siddiqui A. 1987; In vivo phosphorylation and protein analysis of hepatitis B virus core antigen. J Virol 61:955–961
    [Google Scholar]
  33. Sarkar S., Pollack B. P., Lin K.-T., Kotenko S. V., Cook J. R., Lewis A., Pestka S. 2001; hTid-1, a human DnaJ protein, modulates the interferon signaling pathway. J Biol Chem 276:49034–49042 [CrossRef]
    [Google Scholar]
  34. Schaaf C. P., Benzing J., Schmitt T., Erz D. H. R., Tewes M., Bartram C. R., Janssen J. W. G. 2004; Novel interaction partners of the TPR/MET tyrosine kinase. FASEB J 19:267–269
    [Google Scholar]
  35. Schilling B., De-Medina T., Syken J., Vidal M., Münger K. 1998; A novel human DnaJ protein, hTid-1, a homolog of the drosophila tumor suppressor protein Tid56, can interact with the human papillomavirus type 16 E7 oncoprotein. Virology 247:74–85 [CrossRef]
    [Google Scholar]
  36. Sullivan C. S., Pipas J. M. 2001; The virus–chaperone connection. Virology 287:1–8 [CrossRef]
    [Google Scholar]
  37. Syken J., De-Medina T., Münger K. 1999; TID1 , a human homolog of the Drosophila tumor suppressor l(2)tid , encodes two mitochondrial modulators of apoptosis with opposing functions. Proc Natl Acad Sci U S A 96:8499–8504 [CrossRef]
    [Google Scholar]
  38. Syken J., Macian F., Agarwal S., Rao A., Münger K. 2003; TID1, a mammalian homologue of the drosophila tumor suppressor lethal(2) tumorous imaginal discs , regulates activation-induced cell death in Th2 cells. Oncogene 22:4636–4641 [CrossRef]
    [Google Scholar]
  39. Tanaka Y., Kanai F., Kawakami T. & 9 other authors 2004; Interaction of the hepatitis B virus X protein (HBx) with heat shock protein 60 enhances HBx-mediated apoptosis. Biochem Biophys Res Commun 318:461–469 [CrossRef]
    [Google Scholar]
  40. Trentin G. A., He Y., Wu D. C., Tang D., Rozakis-Adcock M. 2004; Identification of a hTid-1 mutation which sensitizes gliomas to apoptosis. FEBS Lett 578:323–330 [CrossRef]
    [Google Scholar]
  41. Tsai J., Douglas M. G. 1996; A conserved HPD sequence of the J-domain is necessary for YDJ1 stimulation of Hsp70 ATPase activity at a site distinct from substrate binding. J Biol Chem 271:9347–9354 [CrossRef]
    [Google Scholar]
  42. Wall D., Zylicz M., Georgopoulos C. 1995; The conserved G/F motif of the DnaJ chaperone is necessary for the activation of the substrate binding properties of the DnaK chaperone. J Biol Chem 270:2139–2144 [CrossRef]
    [Google Scholar]
  43. Wang X., Grammatikakis N., Hu J. 2002a; Role of p50/CDC37 in hepadnavirus assembly and replication. J Biol Chem 277:24361–24367 [CrossRef]
    [Google Scholar]
  44. Wang Y., Han K.-J., Pang X.-W. & 10 other authors 2002b; Large scale identification of human hepatocellular carcinoma-associated antigens by autoantibodies. J Immunol 169:1102–1109 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81684-0
Loading
/content/journal/jgv/10.1099/vir.0.81684-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error