1887

Abstract

Previous examination of the effect of TCF-4 on transcription of the human immunodeficiency virus type 1 (HIV-1) promoter in human astrocytic cells found that TCF-4 affects the HIV-1 promoter through the GC-rich domain (nt −80 to nt −68). Here, the physical interaction and a functional consequence of TCF4–Sp1 contact were characterized. It was shown that expression of TCF-4 in U-87 MG (human astrocytic) cells decreased basal and Sp1-mediated transcription of the HIV-1 promoter. Results from a GST pull-down assay, as well as combined immunoprecipitation and Western blot analysis of protein extracts from U-87 MG cells, revealed an interaction of Sp1 with TCF-4. Using protein chromatography, the region of Sp1 that contacts TCF-4 was mapped to aa 266–350. It was also found that, in cell-free extracts, TCF-4 prevented dsDNA-dependent protein kinase (DNA-PK)-mediated Sp1 phosphorylation. Surprisingly, TCF-4 failed to decrease Sp1-mediated transcription of the HIV-1 long terminal repeat (LTR) and Sp1 phosphorylation in cells expressing HIV-1 Tat. Results from immunoprecipitation/Western blotting demonstrated that TCF-4 lost its ability to interact with Sp1, but not with Tat, in Tat-transfected cells. Taken together, these findings suggest that activity at the HIV-1 promoter is influenced by phosphorylation of Sp1, which is affected by Tat and DNA-PK. Interactions among TCF-4, Sp1 and/or Tat may determine the level of viral gene transcription in human astrocytic cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81691-0
2006-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/6/1613.html?itemId=/content/journal/jgv/10.1099/vir.0.81691-0&mimeType=html&fmt=ahah

References

  1. Abraham S., Sweet T., Sawaya B. E., Rappaport J., Khalili K., Amini S. 2005; Cooperative interaction of C/EBP beta and Tat modulates MCP-1 gene transcription in astrocytes. J Neuroimmunol 160:219–227 [CrossRef]
    [Google Scholar]
  2. Amini S., Clavo A., Nadraga Y., Giordano A., Khalili K., Sawaya B. 2002; Interplay between cdk9 and NF-kappaB factors determines the level of HIV-1 gene transcription in astrocytic cells. Oncogene 21:5797–5803 [CrossRef]
    [Google Scholar]
  3. Amini S., Saunders M., Kelley K., Khalili K., Sawaya B. E. 2004; Interplay between HIV-1 Vpr and Sp1 modulates p21(WAF1) gene expression in human astrocytes. J Biol Chem 279:46046–46056 [CrossRef]
    [Google Scholar]
  4. Amini S., Mameli G., Del Valle L., Skowronska A., Reiss K., Gelman B. B., White M. K., Khalili K., Sawaya B. E. 2005; p73 Interacts with human immunodeficiency virus type 1 Tat in astrocytic cells and prevents its acetylation on lysine 28. Mol Cell Biol 25:8126–8138 [CrossRef]
    [Google Scholar]
  5. Athanikar J. N., Sanchez H. B., Osborne T. F. 1997; Promoter selective transcriptional synergy mediated by sterol regulatory element binding protein and Sp1: a critical role for the Btd domain of Sp1. Mol Cell Biol 17:5193–5200
    [Google Scholar]
  6. Barker N., Hurlstone A., Musisi H., Miles A., Bienz M., Clevers H. 2001; The chromatin remodelling factor Brg-1 interacts with beta-catenin to promote target gene activation. EMBO J 20:4935–4943 [CrossRef]
    [Google Scholar]
  7. Bouwman P., Philipsen S. 2002; Regulation of the activity of Sp1-related transcription factors. Mol Cell Endocrinol 195:27–38 [CrossRef]
    [Google Scholar]
  8. Brady J., Kashanchi F. 2005; Tat gets the “green” light on transcription initiation. Retrovirology 2:69 [CrossRef]
    [Google Scholar]
  9. Brantjes H., Roose J., van de Wetering M., Clevers H. 2001; All Tcf HMG box transcription factors interact with Groucho-related co-repressors. Nucleic Acids Res 29:1410–1419 [CrossRef]
    [Google Scholar]
  10. Bres V., Gomes N., Pickle L., Jones K. A. 2005; A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat. Genes Dev 19:1211–1226 [CrossRef]
    [Google Scholar]
  11. Cavallo R. A., Cox R. T., Moline M. M., Roose J., Polevoy G. A., Clevers H., Peifer M., Bejsovec A. 1998; Drosophila Tcf and Groucho interact to repress wingless signalling activity. Nature 395:604–608 [CrossRef]
    [Google Scholar]
  12. Chang Y. C., Illenye S., Heintz N. H. 2001; Cooperation of E2F-p130 and Sp1-pRb complexes in repression of the Chinese hamster dhfr gene. Mol Cell Biol 21:1121–1131 [CrossRef]
    [Google Scholar]
  13. Chun R. F., Jeang K. T. 1996; Requirements for RNA polymerase II carboxyl-terminal domain for activated transcription of human retroviruses human T-cell lymphotropic virus I and HIV-1. J Biol Chem 271:27888–27894 [CrossRef]
    [Google Scholar]
  14. Chun R. F., Semmes O. J., Neuveut C., Jeang K. T. 1998; Modulation of Sp1 phosphorylation by human immunodeficiency virus type 1 Tat. J Virol 72:2615–2629
    [Google Scholar]
  15. Cicchillitti L., Jimenez S. A., Sala A., Saitta B. 2004; B-Myb acts as a repressor of human COL1A1 collagen gene expression by interacting with Sp1 and CBF factors in scleroderma fibroblasts. Biochem J 378:609–616 [CrossRef]
    [Google Scholar]
  16. Courey A. J., Tjian R. 1988; Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell 55:887–898 [CrossRef]
    [Google Scholar]
  17. Datta P. K., Raychaudhuri P., Bagchi S. 1995; Association of p107 with Sp1: genetically separable regions of p107 are involved in regulation of E2F- and Sp1-dependent transcription. Mol Cell Biol 15:5444–5452
    [Google Scholar]
  18. Ding Z., Gillespie L. L., Mercer F. C., Paterno G. D. 2004; The SANT domain of human MI-ER1 interacts with Sp1 to interfere with GC box recognition and repress transcription from its own promoter. J Biol Chem 279:28009–28016 [CrossRef]
    [Google Scholar]
  19. Dovat S., Ronni T., Russell D., Ferrini F., Cobb B. S., Smale S. T. 2002; A common mechanism for mitotic inactivation of C2H2 zinc finger DNA-binding domains. Genes Dev 16:2985–2990 [CrossRef]
    [Google Scholar]
  20. Dynan W. S., Tjian R. 1983; The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell 35:79–87 [CrossRef]
    [Google Scholar]
  21. Emili A., Greenblatt J., Ingles C. J. 1994; Species-specific interaction of the glutamine-rich activation domains of Sp1 with the TATA box-binding protein. Mol Cell Biol 14:1582–1593
    [Google Scholar]
  22. Fojas de Borja P., Collins N. K., Du P., Azizkhan-Clifford J., Mudryj M. 2001; Cyclin A-CDK phosphorylates Sp1 and enhances Sp1-mediated transcription. EMBO J 20:5737–5747 [CrossRef]
    [Google Scholar]
  23. Giese K., Cox J., Grosschedl R. 1992; The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell 69:185–195 [CrossRef]
    [Google Scholar]
  24. Graham T. A., Weaver C., Mao F., Kimelman D., Xu W. 2000; Crystal structure of a beta-catenin/Tcf complex. Cell 103:885–896 [CrossRef]
    [Google Scholar]
  25. Graña X., De Luca A., Sang N., Fu Y., Claudio P. P., Rosenblatt J., Morgan D. O., Giordano A. 1994; PITALRE, a nuclear CDC2-related protein kinase that phosphorylates the retinoblastoma protein in vitro. Proc Natl Acad Sci U S A 91:3834–3838 [CrossRef]
    [Google Scholar]
  26. Gregory R. C., Taxman D. J., Seshasayee D., Kensinger M. H., Bieker J. J., Wojchowski D. M. 1996; Functional interaction of GATA1 with erythroid Kruppel-like factor and Sp1 at defined erythroid promoters. Blood 87:1793–1801
    [Google Scholar]
  27. Hartley K. O., Gell D., Smith G. C. & 7 other authors 1995; DNA-dependent protein kinase catalytic subunit: a relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell 82:849–856 [CrossRef]
    [Google Scholar]
  28. Hasleton M. D., Ibbitt J. C., Hurst H. C. 2003; Characterization of the human activator protein-2gamma (AP-2gamma) gene: control of expression by Sp1/Sp3 in breast tumour cells. Biochem J 373:925–932 [CrossRef]
    [Google Scholar]
  29. Hecht A., Vleminckx K., Stemmler M. P., van Roy F., Kemler R. 2000; The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. EMBO J 19:1839–1850 [CrossRef]
    [Google Scholar]
  30. Hilton T. L., Wang E. H. 2003; Transcription factor IID recruitment and Sp1 activation. Dual function of TAF1 in cyclin D1 transcription. J Biol Chem 278:12992–13002 [CrossRef]
    [Google Scholar]
  31. Hurlstone A., Clevers H. 2002; T-cell factors: turn-ons and turn-offs. EMBO J 21:2303–2311 [CrossRef]
    [Google Scholar]
  32. Ishitani T., Ninomiya-Tsuji J., Matsumoto K. 2003; Regulation of lymphoid enhancer factor 1/T-cell factor by mitogen-activated protein kinase-related Nemo-like kinase-dependent phosphorylation in Wnt/beta-catenin signaling. Mol Cell Biol 23:1379–1389 [CrossRef]
    [Google Scholar]
  33. Jackson S. P., Tjian R. 1988; O -glycosylation of eukaryotic transcription factors: implications for mechanisms of transcriptional regulation. Cell 55:125–133 [CrossRef]
    [Google Scholar]
  34. Jeang K. T., Chun R., Lin N. H., Gatignol A., Glabe C. G., Fan H. 1993; In vitro and in vivo binding of human immunodeficiency virus type 1 Tat protein and Sp1 transcription factor. J Virol 67:6224–6233
    [Google Scholar]
  35. Johnson-Pais T., Degnin C., Thayer M. J. 2001; pRB induces Sp1 activity by relieving inhibition mediated by MDM2. Proc Natl Acad Sci U S A 98:2211–2216 [CrossRef]
    [Google Scholar]
  36. Jones K. A., Kadonaga J. T., Luciw P. A., Tjian R. 1986; Activation of the AIDS retrovirus promoter by the cellular transcription factor, Sp1. Science 232:755–759 [CrossRef]
    [Google Scholar]
  37. Karlseder J., Rotheneder H., Wintersberger E. 1996; Interaction of Sp1 with the growth- and cell cycle-regulated transcription factor E2F. Mol Cell Biol 16:1659–1667
    [Google Scholar]
  38. Kashanchi F., Piras G., Radonovich M. F., Duvall J. F., Fattaey A., Chiang-Cheng M., Roeder R. G., Brady J. N. 1994; Direct interaction of human TFIID with the HIV-1 transactivator Tat. Nature 367:295–299 [CrossRef]
    [Google Scholar]
  39. Kim Y. S., Kim J. M., Jung D. L. & 9 other authors 2005; Artificial zinc finger fusions targeting Sp1-binding sites and the trans-activator-responsive element potently repress transcription and replication of HIV-1. J Biol Chem 280:21545–21552 [CrossRef]
    [Google Scholar]
  40. Korinek V., Barker N., Morin P. J., van Wichen D., de Weger R., Kinzler K. W., Vogelstein B., Clevers H. 1997; Constitutive transcriptional activation by a β -catenin-Tcf complex in APC−/− colon carcinoma. Science 275:1784–1787 [CrossRef]
    [Google Scholar]
  41. Lee J. S., Galvin K. M., Shi Y. 1993; Evidence for physical interaction between the zinc-finger transcription factors YY1 and Sp1. Proc Natl Acad Sci U S A 90:6145–6149 [CrossRef]
    [Google Scholar]
  42. Lee D. K., Suh D., Edenberg H. J., Hur M. W. 2002; POZ domain transcription factor, FBI-1, represses transcription of ADH5/FDH by interacting with the zinc finger and interfering with DNA binding activity of Sp1. J Biol Chem 277:26761–26768 [CrossRef]
    [Google Scholar]
  43. Leggett R. W., Armstrong S. A., Barry D., Mueller C. R. 1995; Sp1 is phosphorylated and its DNA binding activity down-regulated upon terminal differentiation of the liver. J Biol Chem 270:25879–25884 [CrossRef]
    [Google Scholar]
  44. Lin S. Y., Black A. R., Kostic D., Pajovic S., Hoover C. N., Azizkhan J. C. 1996; Cell cycle-regulated association of E2F1 and Sp1 is related to their functional interaction. Mol Cell Biol 16:1668–1675
    [Google Scholar]
  45. Loregian A., Bortolozzo K., Boso S., Caputo A., Palu G. 2003; Interaction of Sp1 transcription factor with HIV-1 Tat protein: looking for cellular partners. FEBS Lett 543:61–65 [CrossRef]
    [Google Scholar]
  46. Macleod D., Charlton J., Mullins J., Bird A. P. 1994; Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev 8:2282–2292 [CrossRef]
    [Google Scholar]
  47. Milanini-Mongiat J., Pouyssegur J., Pages G. 2002; Identification of two Sp1 phosphorylation sites for p42/p44 mitogen-activated protein kinases: their implication in vascular endothelial growth factor gene transcription. J Biol Chem 277:20631–20639 [CrossRef]
    [Google Scholar]
  48. Miyagishi M., Fujii R., Hatta M., Yoshida E., Araya N., Nagafuchi A., Ishihara S., Nakajima T., Fukamizu A. 2000; Regulation of Lef-mediated transcription and p53-dependent pathway by associating beta-catenin with CBP/p300. J Biol Chem 275:35170–35175 [CrossRef]
    [Google Scholar]
  49. Morin P. J., Sparks A. B., Korinek V., Barker N., Clevers H., Vogelstein B., Kinzler K. W. 1997; Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275:1787–1790 [CrossRef]
    [Google Scholar]
  50. Naar A. M., Beaurang P. A., Robinson K. M., Oliner J. D., Avizonis D., Scheek S., Zwicker J., Kadonaga J. T., Tjian R. 1998; Chromatin, TAFs, and a novel multiprotein coactivator are required for synergistic activation by Sp1 and SREBP-1a in vitro. Genes Dev 12:3020–3031 [CrossRef]
    [Google Scholar]
  51. Pascal E., Tjian R. 1991; Different activation domains of Sp1 govern formation of multimers and mediate transcriptional synergism. Genes Dev 5:1646–1656 [CrossRef]
    [Google Scholar]
  52. Perkins N. D., Agranoff A. B., Pascal E., Nabel G. J. 1994; An interaction between the DNA-binding domains of RelA(p65) and Sp1 mediates human immunodeficiency virus gene activation. Mol Cell Biol 14:6570–6583
    [Google Scholar]
  53. Peruzzi F., Bergonzini V., Aprea S., Reiss K., Sawaya B. E., Rappaport J., Amini S., Khalili K. 2005; Cross talk between growth factors and viral and cellular factors alters neuronal signaling pathways: Implication for HIV-associated dementia. Brain Res Brain Res Rev 50:114–125 [CrossRef]
    [Google Scholar]
  54. Poy F., Lepourcelet M., Shivdasani R. A., Eck M. J. 2001; Structure of a human Tcf4-beta-catenin complex. Nat Struct Biol 8:1053–1057 [CrossRef]
    [Google Scholar]
  55. Rubinfeld B., Albert I., Porfiri E., Fiol C., Munemitsu S., Polakis P. 1996; Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 272:1023–1026 [CrossRef]
    [Google Scholar]
  56. Sawaya B. E., Khalili K., Amini S. 1998a; Transcription of the human immunodeficiency virus type 1 (HIV-1) promoter in central nervous system cells: effect of YB-1 on expression of the HIV-1 long terminal repeat. J Gen Virol 79:239–246
    [Google Scholar]
  57. Sawaya B. E., Khalili K., Mercer W. E., Denisova L., Amini S. 1998b; Cooperative actions of HIV-1 Vpr and p53 modulate viral gene transcription. J Biol Chem 273:20052–20057 [CrossRef]
    [Google Scholar]
  58. Seto E., Lewis B., Shenk T. 1993; Interaction between transcription factors Sp1 and YY1. Nature 365:462–464 [CrossRef]
    [Google Scholar]
  59. Suzuki T., Muto S., Miyamoto S., Aizawa K., Horikoshi M., Nagai R. 2003; Functional interaction of the DNA-binding transcription factor Sp1 through its DNA-binding domain with the histone chaperone TAF-I. J Biol Chem 278:28758–28764 [CrossRef]
    [Google Scholar]
  60. Sweet T., Sawaya B. E., Khalili K., Amini S. 2005; Interplay between NFBP and NF-kappaB modulates tat activation of the LTR. J Cell Physiol 204:375–380 [CrossRef]
    [Google Scholar]
  61. Vallian S., Chin K. V., Chang K. S. 1998; The promyelocytic leukemia protein interacts with Sp1 and inhibits its transactivation of the epidermal growth factor receptor promoter. Mol Cell Biol 18:7147–7156
    [Google Scholar]
  62. Van de Wetering M., Cavallo R., Dooijes D. & 10 other authors 1997; Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88:789–799 [CrossRef]
    [Google Scholar]
  63. Waldman T., Kinzler K. W., Vogelstein B. 1995; p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 55:5187–5190
    [Google Scholar]
  64. Wei P., Garber M. E., Fang S. M., Fischer W. H., Jones K. A. 1998; A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92:451–462 [CrossRef]
    [Google Scholar]
  65. Wells J., Farnham P. J. 2002; Characterizing transcription factor binding sites using formaldehyde crosslinking and immunoprecipitation. Methods 26:48–56 [CrossRef]
    [Google Scholar]
  66. Wortman B., Darbinian N., Sawaya B. E., Khalili K., Amini S. 2002; Evidence for regulation of long terminal repeat transcription by Wnt transcription factor TCF-4 in human astrocytic cells. J Virol 76:11159–11165 [CrossRef]
    [Google Scholar]
  67. Yang X., Su K., Roos M. D., Chang Q., Paterson A. J., Kudlow J. E. 2001; O-linkage of N -acetylglucosamine to Sp1 activation domain inhibits its transcriptional capability. Proc Natl Acad Sci U S A 98:6611–6616 [CrossRef]
    [Google Scholar]
  68. Zhu W.-G., Srinivasan K., Dai Z. & 7 other authors 2003; Methylation of adjacent CpG sites affects Sp1/Sp3 binding and activity in the p21Cip1 promoter. Mol Cell Biol 23:4056–4065 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81691-0
Loading
/content/journal/jgv/10.1099/vir.0.81691-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error