1887

Abstract

Prions are postulated to be the infectious agents of a family of transmissible, fatal, neurodegenerative disorders affecting both humans and animals. The possibility of prion transmission constitutes a public-health risk that confronts regulatory authorities everywhere. The main problem in handling prions is the fact that they are extremely resistant to standard decontamination methods. Thus, the use of harsh and expensive practices to destroy prions is inevitable. The development of applicable and efficient prion-inactivation practices is still highly important for the prevention of accidental transmission. In the search for effective and environmentally friendly methods to eliminate organic compounds and bacteria, much attention has been focused on the so-called advanced oxidation processes. These are based on the formation of hydroxyl radicals, which are known to possess a high reductive potential. This study tested the potential of titanium dioxide, an inexpensive and completely inert reagent, to inactivate prions in a heterogeneous photocatalytic process. Initial experiments were followed by a bioassay with the scrapie strain 263K in Syrian hamsters. The results obtained from this study indicate that titanium dioxide photocatalytic treatment of scrapie-infected brain homogenates reduces infectivity titres significantly.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81746-0
2006-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/10/3125.html?itemId=/content/journal/jgv/10.1099/vir.0.81746-0&mimeType=html&fmt=ahah

References

  1. Adler V., Zeiler B., Kryukov V., Kascsak R., Rubenstein R., Grossman A. 2003; Small, highly structured RNAs participate in the conversion of human recombinant PrPSen to PrPRes in vitro . J Mol Biol 332:47–57 [CrossRef]
    [Google Scholar]
  2. Agustina T. E., Ang H. M., Vareek V. K. 2006; A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. J Photochem Photobiol C: Photochem Rev 6:264–273
    [Google Scholar]
  3. Akowitz A., Sklaviadis T., Manuelidis L. 1994; Endogenous viral complexes with long RNA cosediment with the agent of Creutzfeldt-Jakob disease. Nucleic Acids Res 22:1101–1107 [CrossRef]
    [Google Scholar]
  4. Ashikaga T., Wada M., Kobayashi H., Mori M., Katsumura Y., Fukui H., Kato S., Yamaguchi M., Takamatsu T. 2000; Effect of the photocatalytic activity of TiO2 on plasmid DNA. Mutat Res 466:1–7 [CrossRef]
    [Google Scholar]
  5. Bekbölet M., Araz C. V. 1996; Inactivation of Escherichia coli by photocatalytic oxidation. Chemosphere 32:959–965 [CrossRef]
    [Google Scholar]
  6. Cordeiro Y., Machado F., Juliano L., Juliano M. A., Brentani R. R., Foguel D., Silva J. L. 2001; DNA converts cellular prion protein into the β -sheet conformation and inhibits prion peptide aggregation. J Biol Chem 276:49400–49409 [CrossRef]
    [Google Scholar]
  7. Dormont D. 2002; Prion diseases: pathogenesis and public health concerns. FEBS Lett 529:17–21 [CrossRef]
    [Google Scholar]
  8. Hill A. F., Collinge J. 2003; Subclinical prion infection in humans and animals. Br Med Bull 66:161–170 [CrossRef]
    [Google Scholar]
  9. Kimberlin R. H., Walker C. A. 1977; Characteristics of a short incubation model of scrapie in the golden hamster. J Gen Virol 34:295–304 [CrossRef]
    [Google Scholar]
  10. Maness P.-C., Smolinski S., Blake D. M., Huang Z., Wolfrum E. J., Jacoby W. A. 1999; Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65:4094–4098
    [Google Scholar]
  11. Mills A., Le Hunte S. 1997; An overview of semiconductor photocatalysis. J Photochem Photobiol A: Chem 108:1–35 [CrossRef]
    [Google Scholar]
  12. Murdoch G. H., Sklaviadis T., Manuelidis E. E., Manuelidis L. 1990; Potential retroviral RNAs in Creutzfeldt-Jakob disease. J Virol 64:1477–1486
    [Google Scholar]
  13. O'Farrell P. H. 1975; High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021
    [Google Scholar]
  14. Parra S., Malato S., Blanco J., Péringer P., Pulgarin C. 2001; Concentrating versus non-concentrating reactors for solar photocatalytic degradation of p -nitrotoluene- o -sulfonic acid. Water Sci Technol 44:219–227
    [Google Scholar]
  15. Polymenidou M., Verghese-Nikolakaki S., Groschup M., Chaplin M. J., Stack M. J., Plaitakis A., Sklaviadis T. 2002; A short purification process for quantitative isolation of PrPSc from naturally occurring and experimental transmissible spongiform encephalopathies. BMC Infect Dis 2:23 [CrossRef]
    [Google Scholar]
  16. Poulios I., Micropoulou E., Panou R., Kostopoulou E. 2003; Photooxidation of eosin Y in the presence of semiconducting oxides. Appl Catal B: Environ 41:345–355 [CrossRef]
    [Google Scholar]
  17. Prusiner S. B. 1998; Prions. Proc Natl Acad Sci U S A 95:13363–13383 [CrossRef]
    [Google Scholar]
  18. Prusiner S. B., McKinley M. P., Bolton D. C. & 7 other authors 1984; Prions: methods for assay, purification and characterization. Methods Virol 8:293–345 [CrossRef]
    [Google Scholar]
  19. Rutala W. A., Weber D. J. 2001; Creutzfeldt-Jakob disease: recommendations for disinfection and sterilization. Clin Infect Dis 32:1348–1356 [CrossRef]
    [Google Scholar]
  20. Sachsamanoglou M., Paspaltsis I., Petrakis S., Verghese-Nikolakaki S., Panagiotidis C. H., Voigtlander T., Budka H., Langeveld J. P. M., Sklaviadis T. 2004; Antigenic profile of human recombinant PrP: generation and characterization of a versatile polyclonal antiserum. J Neuroimmunol 146:22–32 [CrossRef]
    [Google Scholar]
  21. Sjogren J. C., Sierka R. A. 1994; Inactivation of phage MS2 by iron-aided titanium dioxide photocatalysis. Appl Environ Microbiol 60:344–347
    [Google Scholar]
  22. Taylor D. M. 1999; Inactivation of prions by physical and chemical means. J Hosp Infect 43:S69–S76 [CrossRef]
    [Google Scholar]
  23. Watts R. J., Kong S., Orr M. P., Miller G. C., Henry B. E. 1995; Photocatalytic inactivation of coliform bacteria and viruses in secondary wastewater effluent. Water Res 29:95–100 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81746-0
Loading
/content/journal/jgv/10.1099/vir.0.81746-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error