1887

Abstract

Although homologues of the open reading frame (ORF) UL4 of herpes simplex virus 1 () have been found in the genomes of all hitherto-analysed alphaherpesviruses, little is known about their function. In a project to analyse systematically, in an isogenic and standardized assay system, the gene products of the alphaherpesvirus pseudorabies virus (PrV; ), the PrV UL4 gene product was identified using a monospecific rabbit antiserum prepared against a bacterial fusion protein. Western blot and immunofluorescence analyses revealed that the 146 codon UL4 ORF of PrV was translated into a nuclear 15 kDa protein which was detectable from 6 h after infection of rabbit kidney cells, but was not found in purified virus particles. For functional analysis, a UL4-negative virus recombinant (PrV-ΔUL4F) was generated by mutagenesis of an infectious full-length clone of the PrV genome in . PrV-ΔUL4F was replication-competent in rabbit kidney cells, and plaque formation was not affected by the mutation. However, maximum virus titres of PrV-ΔUL4F were decreased about fivefold compared with wild-type PrV, and electron microscopy of infected cells demonstrated an impairment of release of mature virions. This growth defect of PrV-ΔUL4F could be corrected completely by propagation in UL4-expressing cells. Correlating with the inconspicuous phenotype, neurovirulence of PrV-ΔUL4F was also not affected significantly. Thus, UL4 encodes a non-structural protein of PrV that enhances virion formation but is not essential for PrV replication or .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81813-0
2006-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/9/2517.html?itemId=/content/journal/jgv/10.1099/vir.0.81813-0&mimeType=html&fmt=ahah

References

  1. Babic N., Klupp B. G., Brack A., Mettenleiter T. C., Ugolini G., Flamand A. 1996; Deletion of glycoprotein gE reduces the propagation of pseudorabies virus in the nervous system of mice after intranasal inoculation. Virology 219:279–284 [CrossRef]
    [Google Scholar]
  2. Brideau A. D., Eldridge M. G., Enquist L. W. 2000; Directional transneuronal infection by pseudorabies virus is dependent on an acidic internalization motif in the Us9 cytoplasmic tail. J Virol 74:4549–4561 [CrossRef]
    [Google Scholar]
  3. Cherepanov P. P., Wackernagel W. 1995; Gene disruption in Escherichia coli : TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158:9–14 [CrossRef]
    [Google Scholar]
  4. Crute J. J., Tsurumi T., Zhu L., Weller S. K., Olivo P. D., Challberg M. D., Mocarski E. S., Lehman I. R. 1989; Herpes simplex virus 1 helicase-primase: a complex of three herpes-encoded gene products. Proc Natl Acad Sci U S A 86:2186–2189 [CrossRef]
    [Google Scholar]
  5. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645 [CrossRef]
    [Google Scholar]
  6. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. J Gen Virol 67:1759–1816 [CrossRef]
    [Google Scholar]
  7. Davison A. J., Eberle R., Hayward G. S., McGeoch D. J., Minson A. C., Pellet P. E., Roizman B., Studdert M. J., Thiry E. 2005; Family Herpesviridae . In Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses pp  193–212 Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. San Diego: Elsevier Academic Press;
    [Google Scholar]
  8. Dean H. J., Cheung A. K. 1993; A 3′ coterminal gene cluster in pseudorabies virus contains herpes simplex virus UL1, UL2, and UL3 gene homologs and a unique UL3.5 open reading frame. J Virol 67:5955–5961
    [Google Scholar]
  9. Dean H. J., Cheung A. K. 1994; Identification of the pseudorabies virus UL4 and UL5 (helicase) genes. Virology 202:962–967 [CrossRef]
    [Google Scholar]
  10. Dietz P., Klupp B. G., Fuchs W., Köllner B., Weiland E., Mettenleiter T. C. 2000; Pseudorabies virus glycoprotein K requires the UL20 gene product for processing. J Virol 74:5083–5090 [CrossRef]
    [Google Scholar]
  11. Eide T., Marsden H. S., Leib D. A., Cunningham C., Davison A. J., Langeland N., Haarr L. 1998; Identification of the UL4 protein of herpes simplex virus type 1. J Gen Virol 79:3033–3038
    [Google Scholar]
  12. Enquist L. W. 2002; Exploiting circuit-specific spread of pseudorabies virus in the central nervous system: insights to pathogenesis and circuit tracers. J Infect Dis 186 (Suppl. 2):S209–S214 [CrossRef]
    [Google Scholar]
  13. Fuchs W., Klupp B. G., Granzow H., Rziha H. J., Mettenleiter T. C. 1996; Identification and characterization of the pseudorabies virus UL3.5 protein, which is involved in virus egress. J Virol 70:3517–3527
    [Google Scholar]
  14. Fuchs W., Klupp B. G., Granzow H., Osterrieder N., Mettenleiter T. C. 2002; The interacting UL31 and UL34 gene products of pseudorabies virus are involved in egress from the host-cell nucleus and represent components of primary enveloped but not mature virions. J Virol 76:364–378 [CrossRef]
    [Google Scholar]
  15. Graham F. L., van der Eb A. J. 1973; A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467 [CrossRef]
    [Google Scholar]
  16. Jahedi S., Markovitz N. S., Filatov F., Roizman B. 1999; Colocalization of the herpes simplex virus 1 UL4 protein with infected cell protein 22 in small, dense nuclear structures formed prior to onset of DNA synthesis. J Virol 73:5132–5138
    [Google Scholar]
  17. Jun P. Y., Strelow L. I., Herman R. C., Marsden H. S., Eide T., Haarr L., Leib D. A. 1998; The UL4 gene of herpes simplex virus type 1 is dispensable for latency, reactivation and pathogenesis in mice. J Gen Virol 79:1603–1611
    [Google Scholar]
  18. Kaplan A. S., Vatter A. 1959; A comparison of herpes simplex and pseudorabies virus. Virology 7:394–407 [CrossRef]
    [Google Scholar]
  19. Klopfleisch R., Teifke J. P., Fuchs W., Kopp M., Klupp B. G., Mettenleiter T. C. 2004; Influence of tegument proteins of pseudorabies virus on neuroinvasion and transneuronal spread in the nervous system of adult mice after intranasal inoculation. J Virol 78:2956–2966 [CrossRef]
    [Google Scholar]
  20. Klopfleisch R., Teifke J. P., Fuchs W., Kopp M., Klupp B. G., Mettenleiter T. C. 2006; Influence of pseudorabies virus proteins on neuroinvasion and neurovirulence in mice. J Virol 80:5571–5576 [CrossRef]
    [Google Scholar]
  21. Klupp B. G., Mettenleiter T. C. 1999; Glycoprotein gL-independent infectivity of pseudorabies virus is mediated by a gD-gH fusion protein. J Virol 73:3014–3022
    [Google Scholar]
  22. Klupp B. G., Granzow H., Mettenleiter T. C. 2000; Primary envelopment of pseudorabies virus at the nuclear membrane requires the UL34 gene product. J Virol 74:10063–10073 [CrossRef]
    [Google Scholar]
  23. Klupp B. G., Hengartner C. J., Mettenleiter T. C., Enquist L. W. 2004; Complete, annotated sequence of the pseudorabies virus genome. J Virol 78:424–440 [CrossRef]
    [Google Scholar]
  24. Kopp M., Granzow H., Fuchs W., Klupp B. G., Mundt E., Karger A., Mettenleiter T. C. 2003; The pseudorabies virus UL11 protein is a virion component involved in secondary envelopment in the cytoplasm. J Virol 77:5339–5351 [CrossRef]
    [Google Scholar]
  25. Laemmli U. K. 1970; Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 277:680–685
    [Google Scholar]
  26. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69:1531–1574 [CrossRef]
    [Google Scholar]
  27. Mettenleiter T. C. 1989; Glycoprotein gIII deletion mutants of pseudorabies virus are impaired in virus entry. Virology 171:623–625 [CrossRef]
    [Google Scholar]
  28. Mettenleiter T. C. 2000; Aujeszky's disease (pseudorabies) virus: the virus and molecular pathogenesis – state of the art; June 1999 Vet Res 31:99–115
    [Google Scholar]
  29. Mettenleiter T. C. 2003; Pathogenesis of neurotropic herpesviruses: role of viral glycoproteins in neuroinvasion and transneuronal spread. Virus Res 92:197–206 [CrossRef]
    [Google Scholar]
  30. Mettenleiter T. C. 2004; Budding events in herpesvirus morphogenesis. Virus Res 106:167–180 [CrossRef]
    [Google Scholar]
  31. Roizman B., Pellet P. E. 2001; The family Herpesviridae : a brief introduction. In Fields Virology , 4th edn. pp  2381–2397 Edited by Knipe D. M., Howley P. M. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  32. Telford E. A. R., Watson M. S., McBride K., Davison A. J. 1992; The DNA sequence of equine herpesvirus-1. Virology 189:304–316 [CrossRef]
    [Google Scholar]
  33. Tulman E. R., Alfonso C. L., Lu Z., Zsak L., Rock D. L., Kutish G. F. 2000; The genome of a very virulent Marek's disease virus. J Virol 74:7980–7988 [CrossRef]
    [Google Scholar]
  34. Yamada H., Jiang Y. M., Oshima S., Wada K., Goshima F., Daikoku T., Nishiyama Y. 1998; Characterization of the UL4 gene product of herpes simplex virus type 2. Arch Virol 143:1199–1207 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81813-0
Loading
/content/journal/jgv/10.1099/vir.0.81813-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error