1887

Abstract

Measles virus (MV) nucleocapsids are present abundantly in brain cells of patients with subacute sclerosing panencephalitis (SSPE). This invariably lethal brain disease develops years after acute measles as result of a persistent MV infection. Various rodent models for MV infection of the central nervous system (CNS) have been described in the past, in which the detection of viral antigens is based on histological staining procedures of paraffin embedded brains. Here, the usage of a recombinant MV (MV-EGFP-CAMH) expressing the haemagglutinin (H) of the rodent-adapted MV-strain CAM/RB and the enhanced green fluorescent protein (EGFP) is described. In newborn rodents the virus infects neurons and causes an acute lethal encephalitis. From 2 weeks on, when the immune system of the genetically unmodified animal is maturating, intracerebral (i.c.) infection is overcome subclinically, however, a focal persistent infection in groups of neurons remains. The complete brain can be analysed in 50 or 100 μm slices, and infected autofluorescent cells are readily detected. Seven and 28 days post-infection (p.i.) 86 and 81 % of mice are infected, respectively, and virus persists for more than 50 days p.i. Intraperitoneal immunization with MV 1 week before infection, but not after infection, protects and prevents persistence. The high percentage of persistence demonstrates that this is a reliable and useful model of a persistent CNS infection in fully immunocompetent mice, which allows the investigation of determinants of the immune system.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81838-0
2006-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/7/2011.html?itemId=/content/journal/jgv/10.1099/vir.0.81838-0&mimeType=html&fmt=ahah

References

  1. Adkins B., Ghanei A., Hamilton K. 1994; Up-regulation of murine neonatal T helper cell responses by accessory cell factors. J Immunol 153:3378–3385
    [Google Scholar]
  2. Allen I. V., McQuaid S., McMahon J., Kirk J., McConnell R. 1996; The significance of measles virus antigen and genome distribution in the CNS in SSPE for mechanisms of viral spread and demyelination. J Neuropathol Exp Neurol 55:471–480 [CrossRef]
    [Google Scholar]
  3. Baczko K., Lampe J., Liebert U. G. & 7 other authors 1993; Clonal expansion of hypermutated measles virus in a SSPE brain. Virology 197:188–195 [CrossRef]
    [Google Scholar]
  4. Bellini W. J., Rota J. S., Lowe L. E., Katz R. S., Dyken P. R., Zaki S. R., Shieh W.-J., Rota P. A. 2005; Subacute sclerosing panencephalitis: more cases of this fatal disease are prevented by measles immunization than previously recognized. J Infect Dis 192:1686–1693 [CrossRef]
    [Google Scholar]
  5. Blixenkrone-Moller M., Bernard A., Bencsik A., Sixt N., Diamond L. E., Logan J. S., Wild T. F. 1998; Role of CD46 in measles virus infection in CD46 transgenic mice. Virology 249:238–248 [CrossRef]
    [Google Scholar]
  6. Carsillo T., Carsillo M., Niewiesk S., Vasconcelos D., Oglesbee M. 2004; Hyperthermic pre-conditioning promotes measles virus clearance from brain in a mouse model of persistent infection. Brain Res 1004:73–82 [CrossRef]
    [Google Scholar]
  7. Cattaneo R., Schmid A., Eschle D., Baczko K., ter Meulen V., Billeter M. A. 1988; Biased hypermutation and other genetic changes in defective measles viruses in human brain infections. Cell 55:255–265 [CrossRef]
    [Google Scholar]
  8. Duprex W. P., McQuaid S., Hangartner L., Billeter M. A., Rima B. K. 1999a; Observation of measles virus cell-to-cell spread in astrocytoma cells by using a green fluorescent protein-expressing recombinant virus. J Virol 73:9568–9575
    [Google Scholar]
  9. Duprex W. P., Duffy I., McQuaid S., Hamill L., Cosby S. L., Billeter M. A., Schneider-Schaulies J., ter Meulen V., Rima B. 1999b; The H gene of rodent brain-adapted measles virus confers neurovirulence to the Edmonston vaccine strain. J Virol 73:6916–6922
    [Google Scholar]
  10. Duprex W. P., McQuaid S., Roscic-Mrkic B., Cattaneo R., McCallister C., Rima B. K. 2000; In vitro and in vivo infection of neural cells by a recombinant measles virus expressing enhanced green fluorescent protein. J Virol 74:7972–7979 [CrossRef]
    [Google Scholar]
  11. Ehrengruber M. U., Ehler E., Billeter M. A., Naim H. Y. 2002; Measles virus spreads in rat hippocampal neurons by cell-to-cell contact and in a polarized fashion. J Virol 76:5720–5728 [CrossRef]
    [Google Scholar]
  12. Evlashev A., Moyse E., Valentin H., Azocar O., Trescol-Biemont M.-C., Marie J. C., Rabourdin-Combe C., Horvat B. 2000; Productive measles virus brain infection and apoptosis in CD46 transgenic mice. J Virol 74:1373–1382 [CrossRef]
    [Google Scholar]
  13. Finke D., Liebert U. G. 1994; CD4+ T cells are essential in overcoming experimental murine measles encephalitis. Immunology 83:184–189
    [Google Scholar]
  14. Finke D., Brinckmann U. G., ter Meulen V., Liebert U. G. 1995; Gamma interferon is a major mediator of antiviral defense in experimental measles virus-induced encephalitis. J Virol 69:5469–5474
    [Google Scholar]
  15. Griffin D. E. 1976; Role of the immune response in age-dependent resistance of mice to encephalitis due to Sindbis virus. J Infect Dis 133:456–464 [CrossRef]
    [Google Scholar]
  16. Griffin D. E. 2001; Measles virus. In Fields Virology pp  1401–1442 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott-Raven;
    [Google Scholar]
  17. Horvat B., Rivailler P., Varior-Krishnan G., Cardoso A., Gerlier D., Rabourdin-Combe C. 1996; Transgenic mice expressing human measles virus (MV) receptor CD46 provide cells exhibiting different permissivities to MV infections. J Virol 70:6673–6681
    [Google Scholar]
  18. Lawrence D. M., Vaughn M. M., Belman A. R., Cole J. S., Rall G. F. 1999; Immune response-mediated protection of adult but not neonatal mice from neuron-restricted measles virus infection and central nervous system disease. J Virol 73:1795–1801
    [Google Scholar]
  19. Lawrence D. M., Patterson C. E., Gales T. L., D'Orazio J. L., Vaughn M. M., Rall G. F. 2000; Measles virus spread between neurons requires cell contact but not CD46 expression, syncytium formation, or extracellular virus production. J Virol 74:1908–1918 [CrossRef]
    [Google Scholar]
  20. Liebert U. G., ter Meulen V. 1987; Virological aspects of measles virus-induced encephalomyelitis in Lewis and BN rats. J Gen Virol 68:1715–1722 [CrossRef]
    [Google Scholar]
  21. Liebert U. G., Finke D. 1995; Measles infections in rodents. In Measles Virus pp  149–166 Edited by Billeter M. A., ter Meulen V. Berlin, Heidelberg, New York: Springer;
    [Google Scholar]
  22. Ludlow M. 2003; Measles virus, a model for neuronal infection and cell-to-cell spread . PhD thesis The Queen's University of Belfast; Northern Ireland, UK:
  23. McQuaid S., Campbell S., Wallace I. J., Kirk J., Cosby S. L. 1998; Measles virus infection and replication in undifferentiated and differentiated human neuronal cells in culture. J Virol 72:5245–5250
    [Google Scholar]
  24. Meissner N. N., Koschel K. 1995; Downregulation of endothelin receptor mRNA synthesis in C6 rat astrocytoma cells by persistent measles virus and canine distemper virus infections. J Virol 69:5191–5194
    [Google Scholar]
  25. Moeller K., Duffy I., Duprex P. & 7 other authors 2001; Recombinant measles viruses expressing altered hemagglutinin (H) genes: functional separation of mutations determining H antibody escape from neurovirulence. J Virol 75:7612–7620 [CrossRef]
    [Google Scholar]
  26. Mrkic B., Pavlovic J., Rulicke T., Volpe P., Buchholz C. J., Hourcade D., Atkinson J. P., Aguzzi A., Cattaneo R. 1998; Measles virus spread and pathogenesis in genetically modified mice. J Virol 72:7420–7427
    [Google Scholar]
  27. Niewiesk S., Brinckmann U., Bankamp B., Sirak S., Liebert U. G., ter Meulen V. 1993; Susceptibility to measles virus-induced encephalitis in mice correlates with impaired antigen presentation to cytotoxic T lymphocytes. J Virol 67:75–81
    [Google Scholar]
  28. Niewiesk S., Schneider-Schaulies J., Ohnimus H., Jassoy C., Schneider-Schaulies S., Diamond L., Logan J. S., ter Meulen V. 1997; CD46 expression does not overcome the intracellular block of measles virus replication in transgenic rats. J Virol 71:7969–7973
    [Google Scholar]
  29. Norrby E., Kristensson K. 1997; Measles virus in the brain. Brain Res Bull 44:213–220 [CrossRef]
    [Google Scholar]
  30. Ogura H., Ayata M., Hayashi K. & 7 other authors 1997; Efficient isolation of subacute sclerosing panencephalitis virus from patient brains by reference to magnetic resonance and computed tomographic images. J Neurovirol 3:304–309 [CrossRef]
    [Google Scholar]
  31. Oldstone M. B. A., Dales S., Tishon A., Lewicki H., Martin L. 2005; A role for dual hits in causation of subacute sclerosing panencephalitis. J Exp Med 202:1185–1190 [CrossRef]
    [Google Scholar]
  32. Patterson J. B., Manchester M., Oldstone M. B. A. 2001a; Disease model: dissecting the pathogenesis of the measles virus. Trends Mol Med 7:85–88 [CrossRef]
    [Google Scholar]
  33. Patterson J. B., Cornu T. I., Redwine J., Dales S., Lewicki H., Holz A., Thomas D., Billeter M. A., Oldstone M. B. A. 2001b; Evidence that the hypermutated M protein of a subacute sclerosing panencephalitis measles virus actively contributes to the chronic progressive CNS disease. Virology 291:215–225 [CrossRef]
    [Google Scholar]
  34. Patterson C. E., Lawrence D. M. P., Echols L. A., Rall G. F. 2002; Immune-mediated protection from measles virus-induced central nervous system disease is noncytolytic and gamma interferon dependent. J Virol 76:4497–4506 [CrossRef]
    [Google Scholar]
  35. Patterson C. E., Daley J. K., Echols L. A., Lane T. E., Rall G. F. 2003; Measles virus infection induces chemokine synthesis by neurons. J Immunol 171:3102–3109 [CrossRef]
    [Google Scholar]
  36. Radecke F., Spielhofer P., Schneider H., Kaelin K., Huber M., Dötsch C., Christiansen G., Billeter M. A. 1995; Rescue of measles virus from cloned DNA. EMBO J 14:5773–5784
    [Google Scholar]
  37. Rall G. F., Manchester M., Daniels L. R., Callahan E. M., Belman A. R., Oldstone M. B. 1997; A transgenic mouse model for measles virus infection of the brain. Proc Natl Acad Sci U S A 94:4659–4663 [CrossRef]
    [Google Scholar]
  38. Shingai M., Inoue N., Okuno T. & 10 other authors 2005; Wild-type measles virus infection in human CD46/CD150-transgenic mice: CD11c-positive dendritic cells establish systemic viral infection. J Immunol 175:3252–3261 [CrossRef]
    [Google Scholar]
  39. ter Meulen V., Stephenson J. R., Kreth H. W. 1983; Subacute sclerosing panencephalitis. In Comprehensive Virology pp  105–159 Edited by Fraenkel-Conrat H., Wagner R. R. New York: Plenum;
    [Google Scholar]
  40. Thorley B. R., Milland J., Christiansen D. & 9 other authors 1997; Transgenic expression of a CD46 (membrane cofactor protein) minigene: studies of xenotransplantation and measles virus infection. Eur J Immunol 27:726–734 [CrossRef]
    [Google Scholar]
  41. Urbanska E. M., Chambers B. J., Ljunggren H. G., Norrby E., Kristensson K. 1997; Spread of measles virus through axonal pathways into limbic structures in the brain of TAP -/- mice. J Med Virol 52:362–369 [CrossRef]
    [Google Scholar]
  42. Weidinger G., Czub S., Neumeister C., Harriott P., ter Meulen V., Niewiesk S. 2000; Role of CD4+ and CD8+ T cells in the prevention of measles virus-induced encephalitis in mice. J Gen Virol 81:2707–2713
    [Google Scholar]
  43. Weidinger G., Henning G., ter Meulen V., Niewiesk S. 2001; Inhibition of major histocompatibility complex class II-dependent antigen presentation by neutralization of gamma interferon leads to breakdown of resistance against measles-induced encephalitis in mice. J Virol 75:3059–3065 [CrossRef]
    [Google Scholar]
  44. Weissbrich B., Schneider-Schaulies J., ter Meulen V. 2003 Measles and its Neurological Complications Edited by Nath A., Berger J. R. New York: Marcel Dekker;
    [Google Scholar]
  45. Welstead G. G., Iorio C., Draker R., Bayani J., Squire J., Vongpunsawad S., Cattaneo R., Richardson C. D. 2005; Measles virus replication in lymphatic cells and organs of CD150 (SLAM) transgenic mice. Proc Natl Acad Sci U S A 102:16415–16420 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81838-0
Loading
/content/journal/jgv/10.1099/vir.0.81838-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error