1887

Abstract

The vaccinia virus (VACV) protein A55 is a BTB/kelch protein with a broad-complex, tramtrack and bric-a-brac (BTB) domain in the N-terminal region and five kelch repeats in the C-terminal half. The BTB/kelch subgroup of the kelch superfamily of proteins has been associated with a wide variety of functions including regulation of the cytoskeleton. VACV contains three genes predicted to encode BTB/kelch proteins: , and . The gene product has been identified as an intracellular protein of 64 kDa that is expressed late in infection. A VACV strain lacking 93.6 % of the A55R open reading frame (vΔA55) was constructed and found to have an unaltered growth rate but a different plaque morphology and cytopathic effect, as well as reduced development of VACV-induced Ca-independent cell/extracellular matrix adhesion. In a murine intradermal model of VACV infection, a virus lacking the gene induced larger lesions than wild-type and revertant control viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81854-0
2006-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/6/1521.html?itemId=/content/journal/jgv/10.1099/vir.0.81854-0&mimeType=html&fmt=ahah

References

  1. Adams J., Kelso R., Cooley L. 2000; The kelch repeat superfamily of proteins: propellers of cell function. Trends Cell Biol 10:17–24 [CrossRef]
    [Google Scholar]
  2. Aguado B., Selmes I. P., Smith G. L. 1992; Nucleotide sequence of 21.8 kbp of variola major virus strain Harvey and comparison with vaccinia virus. J Gen Virol 73:2887–2902 [CrossRef]
    [Google Scholar]
  3. Alcami A., Smith G. L. 1992; A soluble receptor for interleukin-1 β encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell 71:153–167 [CrossRef]
    [Google Scholar]
  4. Alcami A., Smith G. L. 1995; Vaccinia, cowpox, and camelpox viruses encode soluble gamma interferon receptors with novel broad species specificity. J Virol 69:4633–4639
    [Google Scholar]
  5. Antoine G., Scheiflinger F., Dorner F., Falkner F. G. 1998; The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 244:365–396 [CrossRef]
    [Google Scholar]
  6. Bardwell V. J., Treisman R. 1994; The POZ domain: a conserved protein–protein interaction motif. Genes Dev 8:1664–1677 [CrossRef]
    [Google Scholar]
  7. Beattie E., Tartaglia J., Paoletti E. 1991; Vaccinia virus-encoded eIF-2 alpha homolog abrogates the antiviral effect of interferon. Virology 183:419–422 [CrossRef]
    [Google Scholar]
  8. Bomont P., Cavalier L., Blondeau F. & 10 other authors 2000; The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy. Nat Genet 26:370–374 [CrossRef]
    [Google Scholar]
  9. Bowie A., Kiss-Toth E., Symons J. A., Smith G. L., Dower S. K., O'Neill L. A. 2000; A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc Natl Acad Sci U S A 97:10162–10167 [CrossRef]
    [Google Scholar]
  10. Brown C. K., Turner P. C., Moyer R. W. 1991; Molecular characterization of the vaccinia virus hemagglutinin gene. J Virol 65:3598–3606
    [Google Scholar]
  11. Chang H. W., Watson J. C., Jacobs B. L. 1992; The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. Proc Natl Acad Sci U S A 89:4825–4829 [CrossRef]
    [Google Scholar]
  12. Dobbelstein M., Shenk T. 1996; Protection against apoptosis by the vaccinia virus SPI-2 (B13R) gene product. J Virol 70:6479–6485
    [Google Scholar]
  13. Esposito J., Condit R., Obijeski J. 1981; The preparation of orthopoxvirus DNA. J Virol Methods 2:175–179 [CrossRef]
    [Google Scholar]
  14. Falkner F. G., Moss B. 1990; Transient dominant selection of recombinant vaccinia viruses. J Virol 64:3108–3111
    [Google Scholar]
  15. Feierbach B., Verde F., Chang F. 2004; Regulation of a formin complex by the microtubule plus end protein tea1p. J Cell Biol 165:697–707 [CrossRef]
    [Google Scholar]
  16. Furukawa M., He Y. J., Borchers C., Xiong Y. 2003; Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat Cell Biol 5:1001–1007 [CrossRef]
    [Google Scholar]
  17. Goebel S. J., Johnson G. P., Perkus M. E., Davis S. W., Winslow J. P., Paoletti E. 1990; The complete DNA sequence of vaccinia virus. Virology 179:247–266, 517–263
    [Google Scholar]
  18. Harte M. T., Haga I. R., Maloney G., Gray P., Reading P. C., Bartlett N. W., Smith G. L., Bowie A., O'Neill L. A. 2003; The poxvirus protein A52R targets toll-like receptor signaling complexes to suppress host defense. J Exp Med 197:343–351 [CrossRef]
    [Google Scholar]
  19. Heiska L., Carpen O. 2005; Src phosphorylates ezrin at tyrosine 477 and induces a phosphospecific association between ezrin and a kelch-repeat protein family member. J Biol Chem 280:10244–10252 [CrossRef]
    [Google Scholar]
  20. Hernandez M. C., Andres-Barquin P. J., Martinez S., Bulfone A., Rubenstein J. L., Israel M. A. 1997; ENC-1: a novel mammalian kelch-related gene specifically expressed in the nervous system encodes an actin-binding protein. J Neurosci 17:3038–3051
    [Google Scholar]
  21. Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R. 1989; Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77:61–68 [CrossRef]
    [Google Scholar]
  22. Ito N., Phillips S. E., Yadav K. D., Knowles P. F. 1994; Crystal structure of a free radical enzyme, galactose oxidase. J Mol Biol 238:794–814
    [Google Scholar]
  23. Jiang S., Avraham H. K., Park S. Y., Kim T. A., Bu X., Seng S., Avraham S. 2005; Process elongation of oligodendrocytes is promoted by the Kelch-related actin-binding protein Mayven. J Neurochem 92:1191–1203 [CrossRef]
    [Google Scholar]
  24. Kang M. I., Kobayashi A., Wakabayashi N., Kim S. G., Yamamoto M. 2004; Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Proc Natl Acad Sci U S A 101:2046–2051 [CrossRef]
    [Google Scholar]
  25. Kettle S., Alcami A., Khanna A., Ehret R., Jassoy C., Smith G. L. 1997; Vaccinia virus serpin B13R (SPI-2) inhibits interleukin-1 β -converting enzyme and protects virus-infected cells from TNF- and Fas-mediated apoptosis, but does not prevent IL-1 β -induced fever. J Gen Virol 78:677–685
    [Google Scholar]
  26. Kochneva G., Kolosova I., Maksyutova T., Ryabchikova E., Shchelkunov S. 2005; Effects of deletions of kelch-like genes on cowpox virus biological properties. Arch Virol 150:1857–1870 [CrossRef]
    [Google Scholar]
  27. Kotwal G. J., Moss B. 1988a; Vaccinia virus encodes a secretory polypeptide structurally related to complement control proteins. Nature 335:176–178 [CrossRef]
    [Google Scholar]
  28. Kotwal G. J., Moss B. 1988b; Analysis of a large cluster of nonessential genes deleted from a vaccinia virus terminal transposition mutant. Virology 167:524–537
    [Google Scholar]
  29. Li X., Zhang D., Hannink M., Beamer L. J. 2004; Crystal structure of the Kelch domain of human Keap1. J Biol Chem 279:54750–54758 [CrossRef]
    [Google Scholar]
  30. Liang X. Q., Avraham H. K., Jiang S., Avraham S. 2004; Genetic alterations of the NRP/B gene are associated with human brain tumors. Oncogene 23:5890–5900 [CrossRef]
    [Google Scholar]
  31. Mai A., Jung S. K., Yonehara S. 2004; hDKIR, a human homologue of the Drosophila kelch protein, involved in a ring-like structure. Exp Cell Res 300:72–83 [CrossRef]
    [Google Scholar]
  32. Mata J., Nurse P. 1997; Tea1 and the microtubular cytoskeleton are important for generating global spatial order within the fisson yeast cell. Cell 89:939–949 [CrossRef]
    [Google Scholar]
  33. McCraith S., Holtzman T., Moss B., Fields S. 2000; Genome-wide analysis of vaccinia virus protein–protein interactions. Proc Natl Acad Sci U S A 97:4879–4884 [CrossRef]
    [Google Scholar]
  34. McKenzie R., Kotwal G. J., Moss B., Hammer C. H., Frank M. M. 1992; Regulation of complement activity by vaccinia virus complement-control protein. J Infect Dis 166:1245–1250 [CrossRef]
    [Google Scholar]
  35. Parkinson J. E., Smith G. L. 1994; Vaccinia virus gene A36R encodes a M r 43–50 K protein on the surface of extracellular enveloped virus. Virology 204:376–390 [CrossRef]
    [Google Scholar]
  36. Pintard L., Willems A., Peter M. 2004; Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family. EMBO J 23:1681–1687 [CrossRef]
    [Google Scholar]
  37. Pires de Miranda M., Reading P. C., Tscharke D. C., Murphy B. J., Smith G. L. 2003; The vaccinia virus kelch-like protein C2L affects calcium-independent adhesion to the extracellular matrix and inflammation in a murine intradermal model. J Gen Virol 84:2459–2471 [CrossRef]
    [Google Scholar]
  38. Prag S., Adams J. C. 2003; Molecular phylogeny of the kelch-repeat superfamily reveals an expansion of BTB/kelch proteins in animals. BMC Bioinformatics 4:42 [CrossRef]
    [Google Scholar]
  39. Robinson D. N., Cooley L. 1997; Drosophila kelch is an oligomeric ring canal actin organizer. J Cell Biol 138:799–810 [CrossRef]
    [Google Scholar]
  40. Sanderson C. M., Smith G. L. 1998; Vaccinia virus induces Ca2+-independent cell-matrix adhesion during the motile phase of infection. J Virol 72:9924–9933
    [Google Scholar]
  41. Sanderson C. M., Way M., Smith G. L. 1998; Virus-induced cell motility. J Virol 72:1235–1243
    [Google Scholar]
  42. Seet B. T., Johnston J. B., Brunetti C. R. & 7 other authors 2003; Poxviruses and immune evasion. Annu Rev Immunol 21:377–423 [CrossRef]
    [Google Scholar]
  43. Shchelkunov S., Totmenin A., Kolosova I. 2002; Species-specific differences in organization of orthopoxvirus kelch-like proteins. Virus Genes 24:157–162 [CrossRef]
    [Google Scholar]
  44. Spence H. J., Johnston I., Ewart K., Buchanan S. J., Fitzgerald U., Ozanne B. W. 2000; Krp1, a novel kelch related protein that is involved in pseudopod elongation in transformed cells. Oncogene 19:1266–1276 [CrossRef]
    [Google Scholar]
  45. Spriggs M. K., Hruby D. E., Maliszewski C. R., Pickup D. J., Sims J. E., Buller R. M., VanSlyke J. 1992; Vaccinia and cowpox viruses encode a novel secreted interleukin-1-binding protein. Cell 71:145–152 [CrossRef]
    [Google Scholar]
  46. Stack J., Haga I. R., Schroder M., Bartlett N. W., Maloney G., Reading P. C., Fitzgerald K. A., Smith G. L., Bowie A. G. 2005; Vaccinia virus protein A46R targets multiple toll-like-interleukin-1 receptor adaptors and contributes to virulence. J Exp Med 201:1007–1018 [CrossRef]
    [Google Scholar]
  47. Tscharke D. C., Smith G. L. 1999; A model for vaccinia virus pathogenesis and immunity based on intradermal injection of mouse ear pinnae. J Gen Virol 80:2751–2755
    [Google Scholar]
  48. Tscharke D. C., Reading P. C., Smith G. L. 2002; Dermal infection with vaccinia virus reveals roles for virus proteins not seen using other inoculation routes. J Gen Virol 83:1977–1986
    [Google Scholar]
  49. Tulman E. R., Afonso C. L., Lu Z. & 7 other authors 2002; The genomes of sheeppox and goatpox viruses. J Virol 76:6054–6061 [CrossRef]
    [Google Scholar]
  50. Upton C., Mossman K., McFadden G. 1992; Encoding of a homolog of the IFN-gamma receptor by myxoma virus. Science 258:1369–1372 [CrossRef]
    [Google Scholar]
  51. Wakabayashi N., Itoh K., Wakabayashi J. & 10 other authors 2003; Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat Genet 35:238–245 [CrossRef]
    [Google Scholar]
  52. Wang S., Zheng H., Esaki Y., Kelly F., Yan W. 2006; Cullin3 is a KLHL10-interacting protein preferentially expressed during late spermiogenesis. Biol Reprod 74:102–108
    [Google Scholar]
  53. Wasilenko S. T., Stewart T. L., Meyers A. F., Barry M. 2003; Vaccinia virus encodes a previously uncharacterized mitochondrial-associated inhibitor of apoptosis. Proc Natl Acad Sci U S A 100:14345–14350 [CrossRef]
    [Google Scholar]
  54. Xue F., Cooley L. 1993; Kelch encodes a component of intercellular bridges in Drosophila egg chambers. Cell 72:681–693 [CrossRef]
    [Google Scholar]
  55. Zhang D. D., Lo S. C., Cross J. V., Templeton D. J., Hannink M. 2004; Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 24:10941–10953 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81854-0
Loading
/content/journal/jgv/10.1099/vir.0.81854-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error