1887

Abstract

Phage P4 gene encodes the integrase responsible for phage integration into and excision from the chromosome. Here, the data showing that P4 expression is regulated in a complex manner at different levels are presented. First of all, the P promoter is regulated negatively by both Int and Vis, the P4 excisionase. The N-terminal portion of Int appears to be sufficient for such a negative autoregulation, suggesting that the Int N terminus is implicated in DNA binding. Second, full-length transcripts covering the entire gene could be detected only upon P4 infection, whereas in P4 lysogens only short 5′-end covering transcripts were detectable. On the other hand, transcripts covering the 5′-end of were also very abundant upon infection. It thus appears that premature transcription termination and/or mRNA degradation play a role in Int-negative regulation both on the basal prophage transcription and upon infection. Finally, comparison between P transcriptional and translational fusions suggests that Vis regulates Int expression post-transcriptionally. The findings that Vis is also an RNA-binding protein and that Int may be translated from two different start codons have implications on possible regulation models of Int expression.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81875-0
2006-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/8/2423.html?itemId=/content/journal/jgv/10.1099/vir.0.81875-0&mimeType=html&fmt=ahah

References

  1. Argos P., Landy A., Abremski K. & 9 other authors 1986; The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J 5:433–440
    [Google Scholar]
  2. Bishop A. L., Baker S., Jenks S. & 8 other authors 2005; Analysis of the hypervariable region of the Salmonella enterica genome associated with tRNA(leuX). J Bacteriol 187:2469–2482 [CrossRef]
    [Google Scholar]
  3. Biswas T., Aihara H., Radman-Livaja M., Filman D., Landy A., Ellenberger T. 2005; A structural basis for allosteric control of DNA recombination by lambda integrase. Nature 435:1059–1066 [CrossRef]
    [Google Scholar]
  4. Boorstein W. R., Craig E. A. 1989; Primer extension analysis of RNA. Methods Enzymol 180:347–369
    [Google Scholar]
  5. Briani F., Zangrossi S., Ghisotti D., Dehò G. 1996; A Rho-dependent transcription termination site regulated by bacteriophage P4 RNA immunity factor. Virology 223:57–67 [CrossRef]
    [Google Scholar]
  6. Calì S., Spoldi E., Piazzolla D., Dodd I. B., Forti F., Dehò G., Ghisotti D. 2004; Bacteriophage P4 Vis protein is needed for prophage excision. Virology 322:82–92 [CrossRef]
    [Google Scholar]
  7. Cho E. H., Gumport R. I., Gardner J. F. 2002; Interactions between integrase and excisionase in the phage lambda excisive nucleoprotein complex. J Bacteriol 184:5200–5203 [CrossRef]
    [Google Scholar]
  8. Davies D. R., Mahnke Braam L., Reznikoff W. S., Rayment I. 1999; The three-dimensional structure of a Tn 5 transposase-related protein determined to 2.9-Å resolution. J Biol Chem 274:11904–11913 [CrossRef]
    [Google Scholar]
  9. Dehò G., Ghisotti D., Alano P., Zangrossi S., Borrello M. G., Sironi G. 1984; Plasmid mode of propagation of the genetic element P4. J Mol Biol 178:191–207 [CrossRef]
    [Google Scholar]
  10. Dehò G., Zangrossi S., Sabbattini P., Sironi G., Ghisotti D. 1992; Bacteriophage P4 immunity controlled by small RNAs via transcription termination. Mol Microbiol 6:3415–3425 [CrossRef]
    [Google Scholar]
  11. de la Cruz N. B., Weinreich M. D., Wiegand T. W., Krebs M. P., Reznikoff W. S. 1993; Characterization of the Tn 5 transposase and inhibitor proteins: a model for the inhibition of transposition. J Bacteriol 175:6932–6938
    [Google Scholar]
  12. de Moitoso V., Landy A. 1991; A switch in the formation of alternative DNA loops modulates lambda site-specific recombination. Proc Natl Acad Sci U S A 88:588–592 [CrossRef]
    [Google Scholar]
  13. Esposito D., Scocca J. J. 1997; The integrase family of tyrosine recombinases: evolution of a conserved active site domain. Nucleic Acids Res 25:3605–3614 [CrossRef]
    [Google Scholar]
  14. Frumerie C., Sylwan L., Ahlgren-Berg A., Haggård-Ljungquist E. 2005; Cooperative interactions between bacteriophage P2 integrase and its accessory factors IHF and Cox. Virology 332:284–294 [CrossRef]
    [Google Scholar]
  15. Ghisotti D., Finkel S., Halling C., Dehò G., Sironi G., Calendar R. 1990; Nonessential region of bacteriophage P4: DNA sequence, transcription, gene products, and functions. J Virol 64:24–36
    [Google Scholar]
  16. Ghisotti D., Chiaramonte R., Forti F., Zangrossi S., Sironi G., Dehò G. 1992; Genetic analysis of the immunity region of phage-plasmid P4. Mol Microbiol 6:3405–3413 [CrossRef]
    [Google Scholar]
  17. Gonzalez de Valdivia E. I., Isaksson L. A. 2004; A codon window in mRNA downstream of the initiation codon where NGG codons give strongly reduced gene expression in Escherichia coli . Nucleic Acids Res 32:5198–5205 [CrossRef]
    [Google Scholar]
  18. Gonzalez de Valdivia E. I., Isaksson L. A. 2005; Abortive translation caused by peptidyl-tRNA drop-off at NGG codons in the early coding region of mRNA. FEBS J 272:5306–5316 [CrossRef]
    [Google Scholar]
  19. Grainge I., Jayaram M. 1999; The integrase family of recombinase: organization and function of the active site. Mol Microbiol 33:449–456 [CrossRef]
    [Google Scholar]
  20. Grant S. G., Jessee J., Bloom F. R., Hanahan D. 1990; Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 87:4645–4649 [CrossRef]
    [Google Scholar]
  21. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [CrossRef]
    [Google Scholar]
  22. Higgins D. G., Thompson J. D., Gibson T. J. 1996; Using clustal for multiple sequence alignments. Methods Enzymol 266:383–402
    [Google Scholar]
  23. Kita K., Tsuda J., Kato T., Okamoto K., Yanase H., Tanaka M. 1999; Evidence of horizontal transfer of the EcoO109I restriction-modification gene to Escherichia coli chromosomal DNA. J Bacteriol 181:6822–6827
    [Google Scholar]
  24. Lessl M., Balzer D., Lurz R., Waters V. L., Guiney D. G., Lanka E. 1992; Dissection of IncP conjugative plasmid transfer: definition of the transfer region Tra2 by mobilization of the Tra1 region in trans. J Bacteriol 174:2493–2500
    [Google Scholar]
  25. Miller J. H. 1972 In Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Nash H. A. 1981; Integration and excision of bacteriophage lambda: the mechanism of conservation site specific recombination. Annu Rev Genet 15:143–167 [CrossRef]
    [Google Scholar]
  27. Numrych T. E., Gumport R. I., Gardner J. F. 1991; A genetic analysis of Xis and FIS interactions with their binding sites in bacteriophage lambda. J Bacteriol 173:5954–5963
    [Google Scholar]
  28. Nunes-Düby S. E., Kwon H. J., Tirumalai R. S., Ellenberger T., Landy A. 1998; Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res 26:391–406 [CrossRef]
    [Google Scholar]
  29. Patsey R. L., Bruist M. F. 1995; Characterization of the interaction between the lambda intasome and attB . J Mol Biol 252:47–58 [CrossRef]
    [Google Scholar]
  30. Pierson L. S. III, Kahn M. L. 1984; Cloning of the integration and attachment regions of bacteriophage P4. Mol Gen Genet 195:44–51 [CrossRef]
    [Google Scholar]
  31. Pierson L. S. III, Kahn M. L. 1987; Integration of satellite bacteriophage P4 in Escherichia coli . DNA sequences of the phage and host regions involved in site-specific recombination. J Mol Biol 196:487–496 [CrossRef]
    [Google Scholar]
  32. Polo S., Sturniolo T., Dehò G., Ghisotti D. 1996; Identification of a phage-coded DNA-binding protein that regulates transcription from late promoters in bacteriophage P4. J Mol Biol 257:745–755 [CrossRef]
    [Google Scholar]
  33. Radman-Livaja M., Shaw C., Azaro M., Biswas T., Ellenberger T., Landy A. 2003; Arm sequences contribute to the architecture and catalytic function of a lambda integrase-Holliday junction complex. Mol Cell 11:783–794 [CrossRef]
    [Google Scholar]
  34. Radman-Livaja M., Biswas T., Ellenberger T., Landy A., Aihara H. 2006; DNA arms do the legwork to ensure the directionality of lambda site-specific recombination. Curr Opin Struct Biol 16:42–50 [CrossRef]
    [Google Scholar]
  35. Regonesi M. E., Briani F., Ghetta A., Zangrossi S., Ghisotti D., Tortora P., Dehò G. 2004; A mutation in polynucleotide phosphorylase from Escherichia coli impairing RNA binding and degradosome stability. Nucleic Acids Res 32:1006–1017 [CrossRef]
    [Google Scholar]
  36. Reznikoff W. S. 2003; Tn 5 as a model for understanding DNA transposition. Mol Microb 47:1199–1206 [CrossRef]
    [Google Scholar]
  37. Richet E., Abcarian P., Nash H. A. 1988; Synapsis of attachment sites during lambda integrative recombination involves capture of a naked DNA by a protein-DNA complex. Cell 52:9–17 [CrossRef]
    [Google Scholar]
  38. Saha S., Haggård-Ljungquist E., Nordstrom K. 1990; Integration host factor is necessary for lysogenization of Escherichia coli by bacteriophage P2. Mol Microbiol 4:3–11 [CrossRef]
    [Google Scholar]
  39. Sasaki I., Bertani G. 1965; Growth abnormalities in Hfr derivatives of Escherichia coli strain C. J Gen Microbiol 40:365–376 [CrossRef]
    [Google Scholar]
  40. Simons R. W., Houman F., Kleckner N. 1987; Improved single and multicopy lac -based cloning vectors for protein and operon fusions. Gene 53:85–96 [CrossRef]
    [Google Scholar]
  41. Six E. W., Klug C. A. 1973; Bacteriophage P4: a satellite virus depending on a helper such as prophage P2. Virology 51:327–344 [CrossRef]
    [Google Scholar]
  42. Steiniger-White M., Rayment I., Reznikoff W. S. 2004; Structure/function insights into Tn 5 transposition. Curr Opin Struct Biol 14:50–57 [CrossRef]
    [Google Scholar]
  43. Swalla B. M., Cho E. H., Gumport R. I., Gardner J. F. 2003; The molecular basis of co-operative DNA binding between lambda integrase and excisionase. Mol Microbiol 50:89–99 [CrossRef]
    [Google Scholar]
  44. Wu Z., Gumport R. I., Gardner J. F. 1998; Defining the structural and functional roles of the carboxyl region of the bacteriophage lambda excisionase (Xis) protein. J Mol Biol 281:651–661 [CrossRef]
    [Google Scholar]
  45. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
  46. Yu A., Bertani L. E., Haggård-Ljungquist E. 1989; Control of prophage integration and excision in bacteriophage P2: nucleotide sequences of the int gene and att sites. Gene 80:1–11 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81875-0
Loading
/content/journal/jgv/10.1099/vir.0.81875-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error