1887

Abstract

Partial nucleoprotein (N) gene sequences of the rhabdoviruses Obodhiang (OBOV), Kotonkon (KOTV), Rochambeau (RBUV), Kern canyon (KCV), Mount Elgon bat (MEBV), Kolongo (KOLV) and Sandjimba (SJAV) were generated and their phylogenetic positions within the family were determined. Both OBOV and KOTV were placed within the genus . RBUV was joined to the same cluster, but more distantly. MEBV and KCV were grouped into a monophyletic cluster (putative genus) with Oita virus (OITAV). These three viruses, originating from different regions of the world, were all isolated from insectivorous bats and may be specific for these mammals. African avian viruses KOLV and SJAV were joined to each other and formed another clade at the genus level. Further, they were grouped with the recently characterized rhabdovirus Tupaia virus (TRV). Although the genetic distance was great, the grouping was supported by consistent bootstrap values. This observation suggests that viruses of this group may be distributed widely in the Old World. Non-synonymous/synonymous substitution ratio estimations ( / ) using a partial N gene fragment (241 codons) for the three rhabdovirus genera revealed contrasting patterns of evolution, where / values follow the pattern > > . The magnitude of this ratio corresponds well with the number of negatively selected codons. The accumulation of appears evenly distributed along the gene fragment for all three genera. These estimations demonstrated clearly that lyssaviruses are subjected to the strongest constraints against amino acid substitutions, probably related to their particular niche and unique pathobiology.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81879-0
2006-08-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/8/2323.html?itemId=/content/journal/jgv/10.1099/vir.0.81879-0&mimeType=html&fmt=ahah

References

  1. Bourhy H., Cowley J. A., Larrous F., Holmes E. C., Walker P. J. 2005; Phylogenetic relationships among rhabdoviruses inferred using the L polymerase gene. J Gen Virol 86:2849–2858 [CrossRef]
    [Google Scholar]
  2. Buckley S. M. 1975; Arbovirus infection of vertebrate and insect cell cultures, with special emphasis on Mokola, Obodhiang, and kotonkan viruses of the rabies serogroup. Ann N Y Acad Sci 266:241–250 [CrossRef]
    [Google Scholar]
  3. Calisher C. H., Karabatsos N., Zeller H., Digoutte J. P., Tesh R. B., Shope R. E., Travassos da Rosa A. P., St George T. D. 1989; Antigenic relationships among rhabdoviruses from vertebrates and hematophagous arthropods. Intervirology 30:241–257
    [Google Scholar]
  4. Chou P. Y., Fasman D. G. 1978; Prediction of the secondary structure of proteins from their amino acid sequences. Adv Enzymol Relat Areas Mol Biol 47:45–148
    [Google Scholar]
  5. da Cruz F. W., McBride A. J. A., Conceição F. R., Dale J. W., McFadden J., Dellagostin O. A. 2001; Expression of the B-cell and T-cell epitopes of the rabies virus nucleoprotein in Mycobacterium bovis BCG and induction of an humoral response in mice. Vaccine 20:731–736 [CrossRef]
    [Google Scholar]
  6. Davis P. L., Holmes C. E., Larrous F., Van der Poel W. H. M., Tjørnehøj K., Alonso W. J., Bourhy H. 2005; Phylogeography, population dynamics, and molecular evolution of European bat lyssaviruses. J Virol 79:10487–10497 [CrossRef]
    [Google Scholar]
  7. Dietzschold B., Lafon M., Wang H., Otvos L. Jr, Celis E., Wunner W. H., Koprowski H. 1987; Localization and immunological characterization of antigenic domains of the rabies virus internal N and NS proteins. Virus Res 8:103–125 [CrossRef]
    [Google Scholar]
  8. Ertl H., Dietzchold B., Otvos L., Jr. 1991; T helper cell epitope of rabies virus nucleoprotein defined by tri- and tetrapeptides. Eur J Immunol 21:1–10 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1993 phylip – phylogeny inference package (version 3.5c). Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  10. Fu Z. F. 2005; Genetic comparisons of rhabdoviruses from animals and plants. Curr Top Microbiol Immunol 292:1–24
    [Google Scholar]
  11. Fu Z. F., Wunner W. H., Dietzschold B. 1994; Immunoprotection by rabies virus nucleoprotein. In Lyssaviruses pp  207–218 Edited by Rupprecht C. E., Dietzchold B., Koprowski H. Berlin: Springer;
    [Google Scholar]
  12. Gould A. R., Hyatt A. D., Lunt R., Kattenbelt J. A., Hengstberger S., Blacksell S. D. 1998; Characterisation of a novel lyssavirus isolated from pteropid bats in Australia. Virus Res 54:165–187 [CrossRef]
    [Google Scholar]
  13. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  14. Holmes E. C., Woelk C. H., Kassis R., Bourhy H. 2002; Genetic constraints and the adaptive evolution of rabies virus in nature. Virology 292:247–257 [CrossRef]
    [Google Scholar]
  15. Hughes G. J., Orciari L. A., Rupprecht C. E. 2005; Evolutionary timescale of rabies virus adaptation to North American bats inferred from the substitution rate of the nucleoprotein gene. J Gen Virol 86:1467–1474 [CrossRef]
    [Google Scholar]
  16. Iwasaki T., Inoue S., Tanaka K. & 8 other authors 2004; Characterization of Oita virus 296/1972 of Rhabdoviridae isolated from a horseshoe bat bearing characteristics of both lyssavirus and vesiculovirus. Arch Virol 149:1139–1154 [CrossRef]
    [Google Scholar]
  17. Jeanmougin F., Thompson J. D., Gouy M., Higgins D. G., Gibson T. J. 1998; Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405 [CrossRef]
    [Google Scholar]
  18. Johnson M. C., Maxwell J. M., Loh P. C., Leong J. C. 1999; Molecular characterization of the glycoproteins from two warm water rhabdoviruses: snakehead rhabdovirus (SHRV) and rhabdovirus of penaeid shrimp (RPS)/spring viremia of carp virus (SVCV). Virus Res 64:95–106 [CrossRef]
    [Google Scholar]
  19. Kemp G. E., Lee V. H., Moore D. L., Shope R. E., Causey O. R., Murphy F. A. 1973; Kotonkan, a new rhabdovirus related to Mokola virus of the rabies serogroup. Am J Epidemiol 98:43–49
    [Google Scholar]
  20. King A., Davis P., Lawrie A. 1990; The rabies viruses of bats. Vet Microbiol 23:165–174 [CrossRef]
    [Google Scholar]
  21. Koprowski H. 1996; The mouse inoculation test. In Laboratory Techniques in Rabies , 4th edn. pp  80–86 Edited by Meslin F.-X., Kaplan M. M., Koprowski H. Geneva: World Health Organization;
    [Google Scholar]
  22. Kosakovsky Pond S. L., Frost S. D. W. 2005a; Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–2533 [CrossRef]
    [Google Scholar]
  23. Kosakovsky Pond S. L., Frost S. D. W. 2005b; Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222 [CrossRef]
    [Google Scholar]
  24. Kumar S., Tamura K., Jakobsen I.-B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  25. Kuzmin I. V., Rupprecht C. E. 2005; Lyssaviruses. In Encyclopedia of Medical Genomics and Proteomics , online edition. Edited by Fuchs J., Podda M. New York: Marcel Dekker; http://www.dekker.com/sdek/issues∼content=t713172965
    [Google Scholar]
  26. Kuzmin I. V., Orciari L. A., Arai Y. T., Smith J. S., Hanlon C. A., Kameoka Y., Rupprecht C. E. 2003; Bat lyssaviruses (Aravan and Khujand) from Central Asia: phylogenetic relationships according to N, P and G gene sequences. Virus Res 97:65–79 [CrossRef]
    [Google Scholar]
  27. Kuzmin I. V., Botvinkin A. D., McElhinney L. M., Smith J. S., Orciari L. A., Hughes G. J., Fooks A. R., Rupprecht C. E. 2004; Molecular epidemiology of terrestrial rabies in the former Soviet Union. J Wildl Dis 40:617–631 [CrossRef]
    [Google Scholar]
  28. Kuzmin I. V., Hughes G. J., Botvinkin A. D., Orciari L. A., Rupprecht C. E. 2005; Phylogenetic relationships of Irkut and West Caucasian bat viruses within the Lyssavirus genus and suggested quantitative criteria based on the N gene sequence for lyssavirus genotype definition. Virus Res 111:28–43 [CrossRef]
    [Google Scholar]
  29. Meredith C. D., Prossouw A. R., Van Praag Koch H. 1971; An unusual case of human rabies thought to be of chiropteran origin. S Afr Med J 45:767–769
    [Google Scholar]
  30. Nandi S., Negi B. S. 1999; Bovine ephemeral fever: a review. Comp Immunol Microbiol Infect Dis 22:81–91 [CrossRef]
    [Google Scholar]
  31. Sacramento D., Bourhy H., Tordo N. 1991; PCR technique as an alternative method for diagnosis and molecular epidemiology of rabies virus. Mol Cell Probes 5:229–240 [CrossRef]
    [Google Scholar]
  32. Shope R. E. 1982; Rabies-related viruses. Yale J Biol Med 55:271–275
    [Google Scholar]
  33. Shope R. E., Murphy F. A., Harrison A. K., Causey O. R., Kemp G. E., Simpson D. I., Moore D. L. 1970; Two African viruses serologically and morphologically related to rabies virus. J Virol 6:690–692
    [Google Scholar]
  34. Springfeld C., Darai G., Cattaneo R. 2005; Characterization of the Tupaia rhabdovirus genome reveals a long open reading frame overlapping with P and a novel gene encoding a small hydrophobic protein. J Virol 79:6781–6790 [CrossRef]
    [Google Scholar]
  35. Tignor G. H., Murphy F. A., Clark H. F., Shope R. E., Madore P., Bauer S. P., Buckley S. M., Meredith C. D. 1977; Duvenhage virus: morphological, biochemical, histopathological and antigenic relationships to the rabies serogroup. J Gen Virol 37:595–611 [CrossRef]
    [Google Scholar]
  36. Tordo N., Benmansour A., Calisher C. & 7 other authors 2004; Rhabdoviridae. In Virus Taxonomy, Eighth Report of the International Committee on Taxonomy of Viruses pp  623–644 Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. London: Elsevier/Academic Press;
    [Google Scholar]
  37. Walker P. J. 2005; Bovine ephemeral fever in Australia and the world. Curr Top Microbiol Immunol 292:57–80
    [Google Scholar]
  38. Wang Y., Cowley J. A., Walker P. J. 1995; Adelaide River virus nucleoprotein gene: analysis of phylogenetic relationships of ephemeroviruses and other rhabdoviruses. J Gen Virol 76:995–999 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81879-0
Loading
/content/journal/jgv/10.1099/vir.0.81879-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error