1887

Abstract

Adenovirus serotype 5 (Ad5) vectors carrying knobless fibers designed to remove their natural tropism were found to have a lower fiber content than recombinant Ad5 with wild-type (WT) capsid, implying a role for the knob-coding sequence or/and the knob domain in fiber encapsidation. Experimental data using a variety of fiber gene constructs showed that the defect did not occur at the fiber mRNA level, but at the protein level. Knobless fiber proteins were found to be synthesized at a significant slower rate compared with knob-carrying fibers, and the trimerization process of knobless fibers paralleled their slow rate of synthesis. A recombinant Ad5 diploid for the fiber gene (referred to as Ad5/R7-ZZ/E1 : WT-fiber) was constructed to analyse the possible rescue of the knobless low-fiber-content phenotype by co-expression of WT fiber. Ad5/R7-ZZ/E1 : WT-fiber contained a knobless fiber gene in its natural location (L5) in the viral genome and an additional WT fiber gene in an ectopic position in E1. Knobless fiber was still synthesized at low levels compared with the co-expressed E1 : WT fiber and the recovery of the two fiber species in virus progeny reflected their respective amounts in the infected cells. Our results suggested that deletion of the fiber knob domain had a negative effect on the translation of the fiber mRNA and on the intracellular concentration of fiber protein. They also suggested that the knob control of fiber protein synthesis and encapsidation occurred as a effect, which was not modified by WT fiber protein provided by the same Ad5 genome.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81992-0
2006-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/11/3151.html?itemId=/content/journal/jgv/10.1099/vir.0.81992-0&mimeType=html&fmt=ahah

References

  1. Berkner K. L., Sharp P. A. 1985; Effect of the tripartite leader on synthesis of a non-viral protein in an adenovirus 5 recombinant. Nucleic Acids Res 13:841–857 [CrossRef]
    [Google Scholar]
  2. Boudin M.-L., Rigolet M., Lemay P., Galibert F., Boulanger P. 1983; Biochemical and genetical characterization of a fiber-defective temperature-sensitive mutant of type 2 adenovirus. EMBO J 2:1921–1927
    [Google Scholar]
  3. Caillet-Boudin M.-L., Lemay P., Boulanger P. 1991; Functional and structural effects of an Ala to Val mutation in the adenovirus serotype 2 fibre. J Mol Biol 217:477–486 [CrossRef]
    [Google Scholar]
  4. Cauet G., Strub J.-M., Leize E., Wagner E., van Dorsselaer A., Lusky M. 2005; Identification of the glycosylation site of the adenovirus type 5 fiber protein. Biochemistry 44:5453–5460 [CrossRef]
    [Google Scholar]
  5. Gaden F., Franqueville L., Magnusson M. K., Hong S. S., Merten M. D., Lindholm L., Boulanger P. 2004; Gene transduction and cell entry pathway of fiber-modified adenovirus type 5 vectors carrying novel endocytic peptide ligands selected on human tracheal glandular cells. J Virol 78:7227–7247 [CrossRef]
    [Google Scholar]
  6. He T.-C., Zhou S., da Costa L. T., Yu J., Kinzler K. W., Vogelstein B. 1998; A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 95:2509–2514 [CrossRef]
    [Google Scholar]
  7. Henning P., Magnusson M. K., Gunneriusson E., Hong S. S., Boulanger P., Nyfren P.-Å., Lindholm L. 2002; Genetic modification of adenovirus 5 tropism by a novel class of ligands based on a three-helix bundle scaffold derived from staphylococcal protein A. Hum Gene Ther 13:1427–1439 [CrossRef]
    [Google Scholar]
  8. Henning P., Andersson K. M. E., Frykholm K. & 7 other authors 2005; Tumor cell targeted gene delivery by adenovirus 5 vectors carrying knobless fibers with antibody-binding domains. Gene Ther 12:211–224 [CrossRef]
    [Google Scholar]
  9. Hong S. S., Boulanger P. 1995; Protein ligands of the human adenovirus type 2 outer capsid identified by biopanning of a phage-displayed peptide library on separate domains of wild-type and mutant penton capsomers. EMBO J 14:4714–4727
    [Google Scholar]
  10. Hong J. S., Engler J. A. 1991; The amino terminus of the adenovirus fiber protein encodes the nuclear localization signal. Virology 185:758–767 [CrossRef]
    [Google Scholar]
  11. Hong J. S., Engler J. A. 1996; Domains required for assembly of adenovirus type 2 fiber trimers. J Virol 70:7071–7078
    [Google Scholar]
  12. Hong S. S., Magnusson M. K., Henning P., Lindholm L., Boulanger P. A. 2003; Adenovirus stripping: a versatile method to generate adenovirus vectors with new cell target specificity. Mol Ther 7:692–699 [CrossRef]
    [Google Scholar]
  13. Huvent I., Hong S. S., Fournier C. & 7 other authors 1998; Interaction and co-encapsidation of HIV-1 Vif and Gag recombinant proteins. J Gen Virol 79:1069–1081
    [Google Scholar]
  14. Karayan L., Gay B., Gerfaux J., Boulanger P. 1994; Oligomerization of recombinant penton base of adenovirus type 2 and its assembly with fiber in baculovirus-infected cells. Virology 202:782–795 [CrossRef]
    [Google Scholar]
  15. Karayan L., Hong S. S., Gay B., Tournier J., d'Angeac A. D., Boulanger P. 1997; Structural and functional determinants in adenovirus type 2 penton base recombinant protein. J Virol 71:8678–8689
    [Google Scholar]
  16. Krasnykh V., Belousova N., Korokhov N., Mikheeva G., Curiel D. T. 2001; Genetic targeting of an adenovirus vector via replacement of the fiber protein with the phage T4 fibritin. J Virol 75:4176–4183 [CrossRef]
    [Google Scholar]
  17. Legrand V., Spehner D., Schlesinger Y., Settelen N., Pavirani A., Mehtali M. 1999; Fiberless recombinant adenoviruses: virus maturation and infectivity in the absence of fiber. J Virol 73:907–919
    [Google Scholar]
  18. Leissner P., Legrand V., Schlesinger Y., Hadji D. A., van Raaij M., Cusack S., Pavirani A., Mehtali M. 2001; Influence of adenoviral fiber mutations on viral encapsidation, infectivity and in vivo tropism. Gene Ther 8:49–57 [CrossRef]
    [Google Scholar]
  19. Magnusson M. K., Hong S. S., Boulanger P., Lindholm L. 2001; Genetic retargeting of adenovirus: novel strategy employing “deknobbing” of the fiber. J Virol 75:7280–7289 [CrossRef]
    [Google Scholar]
  20. Magnusson M. K., Hong S. S., Henning P., Boulanger P., Lindholm L. 2002; Genetic retargeting of adenovirus vectors: functionality of targeting ligands and their influence on virus viability. J Gene Med 4:356–370 [CrossRef]
    [Google Scholar]
  21. Mitraki A., Barge A., Chroboczek J., Andrieu J.-P., Gagnon J., Ruigrok R. W. H. 1999; Unfolding studies of human adenovirus type 2 fibre trimers: evidence for a stable domain. Eur J Biochem 264:599–606 [CrossRef]
    [Google Scholar]
  22. Mittereder N., March K. L., Trapnell B. C. 1996; Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy. J Virol 70:7498–7509
    [Google Scholar]
  23. Miyazawa N., Leopold P. L., Hackett N. R., Ferris B., Worgall S., Falck-Pedersen E., Crystal R. G. 1999; Fiber swap between adenovirus subgroups B and C alters intracellular trafficking of adenovirus gene transfer vectors. J Virol 73:6056–6065
    [Google Scholar]
  24. Miyazawa N., Crystal R. G., Leopold P. L. 2001; Adenovirus serotype 7 retention in a late endosomal compartment prior to cytosol escape is modulated by fiber protein. J Virol 75:1387–1400 [CrossRef]
    [Google Scholar]
  25. Molinier-Frenkel V., Lengagne R., Gaden F., Hong S. S., Choppin J., Gahery-Ségard H., Boulanger P., Guillet J.-G. 2002; Adenovirus hexon protein is a potent adjuvant for activation of a cellular immune response. J Virol 76:127–135 [CrossRef]
    [Google Scholar]
  26. Mullis K. G., Haltiwanger R. S., Hart G. W., Marchase R. B., Engler J. A. 1990; Relative accessibility of N -acetylglucosamine in trimers of the adenovirus types 2 and 5 fiber proteins. J Virol 64:5317–5323
    [Google Scholar]
  27. Novelli A., Boulanger P. 1991a; Deletion analysis of functional domains in baculovirus-expressed adenovirus type 2 fiber. Virology 185:365–376 [CrossRef]
    [Google Scholar]
  28. Novelli A., Boulanger P. A. 1991b; Assembly of adenovirus type 2 fiber synthesized in cell-free translation system. J Biol Chem 266:9299–9303
    [Google Scholar]
  29. Nygren P.-Å., Skerra A. 2004; Binding proteins from alternative scaffolds. J Immunol Methods 290:3–28 [CrossRef]
    [Google Scholar]
  30. O'Reilly D. R., Miller L. K., Luckow V. A. 1994; Virus methods. In Baculovirus Expression Vectors . A Laboratory Manual pp  124–138 Edited by OU Press Oxford, UK: Oxford University Press;
    [Google Scholar]
  31. Russell W. C. 2000; Update on adenovirus and its vectors. J Gen Virol 81:2573–2604
    [Google Scholar]
  32. Schoggins J. W., Gall J. G. D., Falck-Pedersen E. 2003; Subgroup B and F fiber chimeras eliminate normal adenovirus type 5 vector transduction in vitro and in vivo. J Virol 77:1039–1048 [CrossRef]
    [Google Scholar]
  33. Shaw A. R., Ziff E. B. 1980; Transcripts from the adenovirus-2 major late promoter yield a single family of 3′ coterminal mRNAs and five late families. Cell 22:905–916 [CrossRef]
    [Google Scholar]
  34. Shayakhmetov D. M., Lieber A. 2000; Dependence of adenovirus infectivity on length of the fiber shaft domain. J Virol 74:10274–10286 [CrossRef]
    [Google Scholar]
  35. Shayakhmetov D. M., Li Z.-Y., Ternovoi V., Gaggar A., Gharwan H., Lieber A. 2003; The interaction between the fiber knob domain and the cellular attachment receptor determines the intracellular trafficking route of adenoviruses. J Virol 77:3712–3723 [CrossRef]
    [Google Scholar]
  36. Shenk T. E. 2001; Adenoviridae : the viruses and their replication. In Fields Virology pp  2265–2300 Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott, Williams & Wilkins;
    [Google Scholar]
  37. van Beusechem V. W., van Rijswijk A. L. C. T., van Es H. H. G., Haisma H. J., Pinedo H. M., Gerritsen W. R. 2000; Recombinant adenovirus vectors with knobless fibers for targeted gene transfer. Gene Ther 7:1940–1946 [CrossRef]
    [Google Scholar]
  38. von Seggern D. J., Chiu C. Y., Fleck S. K., Stewart P. L., Nemerow G. R. 1999; A helper-independent adenovirus vector with E1, E3, and fiber deleted: structure and infectivity of fiberless particles. J Virol 73:1601–1608
    [Google Scholar]
  39. Wu E., Pache L., von Seggern D. J., Mullen T.-M., Mikyas Y., Stewart P. L., Nemerow G. R. 2003; Flexibility of the adenovirus fiber is required for efficient receptor interaction. J Virol 77:7225–7235 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81992-0
Loading
/content/journal/jgv/10.1099/vir.0.81992-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error