1887

Abstract

The untranslated regions (UTRs) of the foot-and-mouth disease virus (FMDV) genome contain multiple functional elements. In the 5′ UTR, the internal ribosome entry site (IRES) element governs cap-independent translation initiation, whereas the S region is presumably involved in RNA replication. The 3′ UTR, composed of two stem–loops and a poly(A) tract, is required for viral infectivity and stimulates IRES activity. Here, it was found that the 3′ end established two distinct strand-specific, long-range RNA–RNA interactions, one with the S region and another with the IRES element. These interactions were not observed with the 3′ UTR of a different picornavirus. Several results indicated that different 3′ UTR motifs participated in IRES or S region interactions. Firstly, a high-order structure adopted by both the entire IRES and the 3′ UTR was essential for RNA interaction. In contrast, the S region interacted with each of the stem–loops. Secondly, S–3′ UTR interaction but not IRES–3′ UTR interaction was dependent on a poly(A)-dependent conformation. However, no other complexes were observed in mixtures containing the three transcripts, suggesting that these regions did not interact simultaneously with the 3′ UTR probe. Cellular proteins have been found to bind the S region and one of these also binds to the 3′ UTR in a competitive manner. Our data suggest that 5′–3′-end bridging through both direct RNA–RNA contacts and RNA–protein interactions may play an essential role in the FMDV replication cycle.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82059-0
2006-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/10/3013.html?itemId=/content/journal/jgv/10.1099/vir.0.82059-0&mimeType=html&fmt=ahah

References

  1. Agol V. A. 2002; Picornavirus genome: an overview. In Molecular Biology of Picornaviruses pp  127–148 Edited by Semler B. L., Wimmer E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  2. Alexander L., Lu H. H., Wimmer E. 1994; Polioviruses containing picornavirus type 1 and/or type 2 internal ribosomal entry site elements: genetic hybrids and the expression of a foreign gene. Proc Natl Acad Sci U S A 91:1406–1410 [CrossRef]
    [Google Scholar]
  3. Alvarez D. E., Lodeiro M. F., Ludueña S. J., Pietrasanta L. I., Gamarnik A. V. 2005; Long-range RNA–RNA interactions circularize the dengue virus genome. J Virol 79:6631–6643 [CrossRef]
    [Google Scholar]
  4. Bedard K. M., Walter B. L., Semler B. L. 2004; Multimerization of poly(rC) binding protein 2 is required for translation initiation mediated by a viral IRES. RNA 10:1266–1276 [CrossRef]
    [Google Scholar]
  5. Belsham G. J., Martínez-Salas E. 2004; Genome organisation, translation and replication of foot-and-mouth disease virus RNA. In Foot and Mouth Disease: Current Perspectives pp  19–52 Edited by Domingo E., Sobrino F. Norfolk, UK: Horizon Bioscience;
    [Google Scholar]
  6. Brown D. M., Cornell C. T., Tran G. P., Nguyen J. H. C., Semler B. L. 2005; An authentic 3′ noncoding region is necessary for efficient poliovirus replication. J Virol 79:11962–11973 [CrossRef]
    [Google Scholar]
  7. Burgui I., Aragón T., Ortín J., Nieto A. 2003; PABP1 and eIF4GI associate to influenza virus NS1 protein in viral mRNA translation initiation complexes. J Gen Virol 84:3263–3274 [CrossRef]
    [Google Scholar]
  8. Carrillo C., Tulman E. R., Delhon G., Lu Z., Carreno A., Vagnozzi A., Kutish G. F., Rock D. L. 2005; Comparative genomics of foot-and-mouth disease virus. J Virol 79:6487–6504 [CrossRef]
    [Google Scholar]
  9. Corver J., Lenches E., Smith K., Robison R. A., Sando T., Strauss E. G., Strauss J. H. 2003; Fine mapping of a cis -acting sequence element in yellow fever virus RNA that is required for RNA replication and cyclization. J Virol 77:2265–2270 [CrossRef]
    [Google Scholar]
  10. De Nova-Ocampo M., Villegas-Sepúlveda N., del Angel R. M. 2002; Translation elongation factor-1 α , La, and PTB interact with the 3′ untranslated region of dengue 4 virus RNA. Virology 295:337–347 [CrossRef]
    [Google Scholar]
  11. Dobrikova E., Florez P., Bradrick S., Gromeier M. 2003; Activity of a type 1 picornavirus internal ribosomal entry site is determined by sequences within the 3′ nontranslated region. Proc Natl Acad Sci U S A 100:15125–15130 [CrossRef]
    [Google Scholar]
  12. Domingo E., Escarmis C., Martinez M. A., Martínez-Salas E., Mateu M. G. 1992; Foot-and-mouth disease virus populations are quasispecies. Curr Top Microbiol Immunol 176:33–47
    [Google Scholar]
  13. Escarmis C., Toja M., Medina M., Domingo E. 1992; Modifications of the 5′ untranslated region of foot-and-mouth disease virus after prolonged persistence in cell culture. Virus Res 26:113–125 [CrossRef]
    [Google Scholar]
  14. Fabian M. R., White K. A. 2004; 5′–3′ RNA–RNA interaction facilitates cap- and poly(A) tail-independent translation of tomato bushy stunt virus mRNA: a potential common mechanism for Tombusviridae . J Biol Chem 279:28862–28872 [CrossRef]
    [Google Scholar]
  15. Fedor M. J., Uhlenbeck O. C. 1990; Substrate sequence effects on “hammerhead” RNA catalytic efficiency. Proc Natl Acad Sci U S A 87:1668–1672 [CrossRef]
    [Google Scholar]
  16. Fernández-Miragall O., Martínez-Salas E. 2003; Structural organization of a viral IRES depends on the integrity of the GNRA motif. RNA 9:1333–1344 [CrossRef]
    [Google Scholar]
  17. Fernández-Miragall O., Ramos R., Ramajo J., Martínez-Salas E. 2006; Evidence of reciprocal tertiary interactions between conserved motifs involved in organizing RNA structure essential for internal initiation of translation. RNA 12:223–234
    [Google Scholar]
  18. Ferrandon D., Koch I., Westhof E., Nüsslein-Volhard C. 1997; RNA–RNA interaction is required for the formation of specific bicoid mRNA 3′ UTR–STAUFEN ribonucleoprotein particles. EMBO J 16:1751–1758 [CrossRef]
    [Google Scholar]
  19. Gamarnik A. V., Andino R. 1997; Two functional complexes formed by KH domain containing proteins with the 5′ noncoding region of poliovirus RNA. RNA 3:882–892
    [Google Scholar]
  20. Gamarnik A. V., Andino R. 1998; Switch from translation to RNA replication in a positive-stranded RNA virus. Genes Dev 12:2293–2304 [CrossRef]
    [Google Scholar]
  21. Gromeier M., Alexander L., Wimmer E. 1996; Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc Natl Acad Sci U S A 93:2370–2375 [CrossRef]
    [Google Scholar]
  22. Guo L., Allen E. M., Miller W. A. 2001; Base-pairing between untranslated regions facilitates translation of uncapped, nonpolyadenylated viral RNA. Mol Cell 7:1103–1109 [CrossRef]
    [Google Scholar]
  23. Hahn C. S., Hahn Y. S., Rice C. M., Lee E., Dalgarno L., Strauss E. G., Strauss J. H. 1987; Conserved elements in the 3′ untranslated region of flavivirus RNAs and potential cyclization sequences. J Mol Biol 198:33–41 [CrossRef]
    [Google Scholar]
  24. Hellen C. U. T., Sarnow P. 2001; Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15:1593–1612 [CrossRef]
    [Google Scholar]
  25. Hentze M. W. 1997; eIF4G: a multipurpose ribosome adapter?. Science 275:500–501 [CrossRef]
    [Google Scholar]
  26. Herold J., Andino R. 2001; Poliovirus RNA replication requires genome circularization through a protein–protein bridge. Mol Cell 7:581–591 [CrossRef]
    [Google Scholar]
  27. Isken O., Grassmann C. W., Sarisky R. T., Kann M., Zhang S., Grosse F., Kao P. N., Behrens S.-E. 2003; Members of the NF90/NFAR protein group are involved in the life cycle of a positive-strand RNA virus. EMBO J 22:5655–5665 [CrossRef]
    [Google Scholar]
  28. Isken O., Grassmann C. W., Yu H., Behrens S.-E. 2004; Complex signals in the genomic 3′ nontranslated region of bovine viral diarrhea virus coordinate translation and replication of the viral RNA. RNA 10:1637–1652 [CrossRef]
    [Google Scholar]
  29. Khromykh A. A., Meka H., Guyatt K. J., Westaway E. G. 2001; Essential role of cyclization sequences in flavivirus RNA replication. J Virol 75:6719–6728 [CrossRef]
    [Google Scholar]
  30. Khromykh A. A., Kondratieva N., Sgro J.-Y., Palmenberg A., Westaway E. G. 2003; Significance in replication of the terminal nucleotides of the Flavivirus genome. J Virol 77:10623–10629 [CrossRef]
    [Google Scholar]
  31. López de Quinto S., Martínez-Salas E. 1997; Conserved structural motifs located in distal loops of aphthovirus internal ribosome entry site domain 3 are required for internal initiation of translation. J Virol 71:4171–4175
    [Google Scholar]
  32. López de Quinto S., Martínez-Salas E. 2000; Interaction of the eIF4G initiation factor with the aphthovirus IRES is essential for internal translation initiation in vivo. RNA 6:1380–1392 [CrossRef]
    [Google Scholar]
  33. López de Quinto S., Lafuente E., Martínez-Salas E. 2001; IRES interaction with translation initiation factors: functional characterization of novel RNA contacts with eIF3, eIF4B, and eIF4GII. RNA 7:1213–1226 [CrossRef]
    [Google Scholar]
  34. Lopez de Quinto S., Sáiz M., de la Morena D., Sobrino F., Martínez-Salas E. 2002; IRES-driven translation is stimulated separately by the FMDV 3′-NCR and poly(A) sequences. Nucleic Acids Res 30:4398–4405 [CrossRef]
    [Google Scholar]
  35. Martínez-Salas E., Fernández-Miragall O. 2004; Picornavirus IRES: structure function relationship. Curr Pharm Des 10:3757–3767 [CrossRef]
    [Google Scholar]
  36. Martínez-Salas E., Ramos R., Lafuente E., López de Quinto S. 2001; Functional interactions in internal translation initiation directed by viral and cellular IRES elements. J Gen Virol 82:973–984
    [Google Scholar]
  37. Melchers W. J. G., Hoenderop J. G. J., Bruins Slot H. J., Pleij C. W. A., Pilipenko E. V., Agol V. I., Galama J. M. D. 1997; Kissing of the two predominant hairpin loops in the coxsackie B virus 3′ untranslated region is the essential structural feature of the origin of replication required for negative-strand RNA synthesis. J Virol 71:686–696
    [Google Scholar]
  38. Melchers W. J. G., Bakkers J. M. J. E., Bruins Slot H. J., Galama J. M. D., Agol V. I., Pilipenko E. V. 2000; Cross-talk between orientation-dependent recognition determinants of a complex control RNA element, the enterovirus oriR . RNA 6:976–987 [CrossRef]
    [Google Scholar]
  39. Mellits K. H., Meredith J. M., Rohll J. B., Evans D. J., Almond J. W. 1998; Binding of a cellular factor to the 3′ untranslated region of the RNA genomes of entero- and rhinoviruses plays a role in virus replication. J Gen Virol 79:1715–1723
    [Google Scholar]
  40. Novak J. E., Kirkegaard K. 1994; Coupling between genome translation and replication in an RNA virus. Genes Dev 8:1726–1737 [CrossRef]
    [Google Scholar]
  41. Paillart J.-C., Skripkin E., Ehresmann B., Ehresmann C., Marquet R. 1996; A loop–loop “kissing” complex is the essential part of the dimer linkage of genomic HIV-1 RNA. Proc Natl Acad Sci U S A 93:5572–5577 [CrossRef]
    [Google Scholar]
  42. Parsley T. B., Towner J. S., Blyn L. B., Ehrenfeld E., Semler B. L. 1997; Poly (rC) binding protein 2 forms a ternary complex with the 5′-terminal sequences of poliovirus RNA and the viral 3CD proteinase. RNA 3:1124–1134
    [Google Scholar]
  43. Pilipenko E. V., Pestova T. V., Kolupaeva V. G., Khitrina E. V., Poperechnaya A. N., Agol V. I., Hellen C. U. T. 2000; A cell cycle-dependent protein serves as a template-specific translation initiation factor. Genes Dev 14:2028–2045
    [Google Scholar]
  44. Piron M., Vende P., Cohen J., Poncet D. 1998; Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F. EMBO J 17:5811–5821 [CrossRef]
    [Google Scholar]
  45. Ramos R., Martínez-Salas E. 1999; Long-range RNA interactions between structural domains of the aphthovirus internal ribosome entry site (IRES). RNA 5:1374–1383 [CrossRef]
    [Google Scholar]
  46. Rohll J. B., Moon D. H., Evans D. J., Almond J. W. 1995; The 3′ untranslated region of picornavirus RNA: features required for efficient genome replication. J Virol 69:7835–7844
    [Google Scholar]
  47. Sáiz M., Gómez S., Martínez-Salas E., Sobrino F. 2001; Deletion or substitution of the aphthovirus 3′ NCR abrogates infectivity and virus replication. J Gen Virol 82:93–101
    [Google Scholar]
  48. Shen R., Miller W. A. 2004; The 3′ untranslated region of tobacco necrosis virus RNA contains a barley yellow dwarf virus-like cap-independent translation element. J Virol 78:4655–4664 [CrossRef]
    [Google Scholar]
  49. Shurtleff A. C., Beasley D. W. C., Chen J. J. Y. & 9 other authors 2001; Genetic variation in the 3′ non-coding region of dengue viruses. Virology 281:75–87 [CrossRef]
    [Google Scholar]
  50. Stassinopoulos I. A., Belsham G. J. 2001; A novel protein-RNA binding assay: functional interactions of the foot-and-mouth disease virus internal ribosome entry site with cellular proteins. RNA 7:114–122 [CrossRef]
    [Google Scholar]
  51. Todd S., Towner J. S., Brown D. M., Semler B. L. 1997; Replication-competent picornaviruses with complete genomic RNA 3′ noncoding region deletions. J Virol 71:8868–8874
    [Google Scholar]
  52. van Ooij M. J. M., Glaudemans D. H. R. F., Heus H. A., van Kuppeveld F. J., Melchers W. J. G. 2006; Structural and functional integrity of the coxsackievirus B3 ori R: spacing between coaxial RNA helices. J Gen Virol 87:689–695 [CrossRef]
    [Google Scholar]
  53. Vende P., Piron M., Castagné N., Poncet D. 2000; Efficient translation of rotavirus mRNA requires simultaneous interaction of NSP3 with the eukaryotic translation initiation factor eIF4G and the mRNA 3′ end. J Virol 74:7064–7071 [CrossRef]
    [Google Scholar]
  54. Walter B. L., Nguyen J. H., Ehrenfeld E., Semler B. L. 1999; Differential utilization of poly(rC) binding protein 2 in translation directed by picornavirus IRES elements. RNA 5:1570–1585 [CrossRef]
    [Google Scholar]
  55. Witwer C., Rauscher S., Hofacker I. L., Stadler P. F. 2001; Conserved RNA secondary structures in Picornaviridae genomes. Nucleic Acids Res 29:5079–5089 [CrossRef]
    [Google Scholar]
  56. You S., Falgout B., Markoff L., Padmanabhan R. 2001; In vitro RNA synthesis from exogenous dengue viral RNA templates requires long range interactions between 5′- and 3′-terminal regions that influence RNA structure. J Biol Chem 276:15581–15591 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82059-0
Loading
/content/journal/jgv/10.1099/vir.0.82059-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error