1887

Abstract

The entry into cells of Newcastle disease virus (NDV), a prototype member of the paramyxoviruses, is believed to occur by direct fusion at the plasma membrane through a pH-independent mechanism. In addition, NDV may enter host cells by an endocytic pathway. Treatment of cells with drugs that block caveolae-dependent endocytosis reduced NDV fusion and infectivity, the degree of inhibition being dependent on virus concentration. The inhibitory effect was reduced greatly when drugs were added after virus adsorption. Cells treated with methyl -cyclodextrin, a drug that sequesters cholesterol from membranes, reduced the extent of fusion, infectivity and virus–cell binding; this indicates that cholesterol plays a role in NDV entry. Double-labelling immunofluorescence assays performed with anti-NDV monoclonal antibodies and antibodies against the early endosome marker EEA1 revealed the localization of the virus in these intracellular structures. Using fluorescence microscopy, it was found that cell–cell fusion was enhanced at low pH. It is concluded that NDV may infect cells through a caveolae-dependent endocytic pathway, suggesting that this pathway could be an alternative route for virus entry into cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82150-0
2007-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/2/559.html?itemId=/content/journal/jgv/10.1099/vir.0.82150-0&mimeType=html&fmt=ahah

References

  1. Anderson R. G. 1993; Caveolae: where incoming and outgoing messengers meet. Proc Natl Acad Sci U S A 90:10909–10913 [CrossRef]
    [Google Scholar]
  2. Anderson H. A., Chen Y., Norkin L. C. 1996; Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Mol Biol Cell 7:1825–1834 [CrossRef]
    [Google Scholar]
  3. Barnard R. J., Narayan S., Dornadula G., Miller M. D., Young J. A. 2004; Low pH is required for avian sarcoma and leukosis virus Env-dependent viral penetration into the cytosol and not for viral uncoating. J Virol 78:10433–10441 [CrossRef]
    [Google Scholar]
  4. Bartlett J. S., Wilcher R., Samulski R. J. 2000; Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors. J Virol 74:2777–2785 [CrossRef]
    [Google Scholar]
  5. Bousse T. L., Taylor G., Krishnamurthy S., Portner A., Samal S. K., Takimoto T. 2004; Biological significance of the second receptor binding site of Newcastle disease virus hemagglutinin-neuraminidase protein. J Virol 78:13351–13355 [CrossRef]
    [Google Scholar]
  6. Chandran K., Sullivan N. J., Felbor U., Whelan S. P., Cunningham J. M. 2005; Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science 308:1643–1645 [CrossRef]
    [Google Scholar]
  7. Cobaleda C., Muñoz-Barroso I., Sagrera A., Villar E. 2002; Fusogenic activity of reconstituted Newcastle disease virus envelopes: a role for the hemagglutinin-neuraminidase protein in the fusion process. Int J Biochem Cell Biol 34:403–413 [CrossRef]
    [Google Scholar]
  8. Conner S. D., Schmid S. L. 2003; Regulated portals of entry into the cell. Nature 422:37–44 [CrossRef]
    [Google Scholar]
  9. Daecke J., Fackler O. T., Dittmar M. T., Krausslich H. G. 2005; Involvement of clathrin-mediated endocytosis in human immunodeficiency virus type 1 entry. J Virol 79:1581–1594 [CrossRef]
    [Google Scholar]
  10. Damm E. M., Pelkmans L., Kartenbeck J., Mezzacasa A., Kurzchalia T., Helenius A. 2005; Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J Cell Biol 168:477–488 [CrossRef]
    [Google Scholar]
  11. Danthi P., Chow M. 2004; Cholesterol removal by methyl-beta-cyclodextrin inhibits poliovirus entry. J Virol 78:33–41 [CrossRef]
    [Google Scholar]
  12. DeTulleo L., Kirchhausen T. 1998; The clathrin endocytic pathway in viral infection. EMBO J 17:4585–4593 [CrossRef]
    [Google Scholar]
  13. Diederich S., Moll M., Klenk H.-D., Maisner A. 2005; The Nipah virus fusion protein is cleaved within the endosomal compartment. J Biol Chem 280:29899–29903 [CrossRef]
    [Google Scholar]
  14. Earp L. J., Delos S. E., Netter R. C., Bates P., White J. M. 2003; The avian retrovirus avian sarcoma/leukosis virus subtype A reaches the lipid mixing stage of fusion at neutral pH. J Virol 77:3058–3066 [CrossRef]
    [Google Scholar]
  15. Eash S., Querbes W., Atwood W. J. 2004; Infection of vero cells by BK virus is dependent on caveolae. J Virol 78:11583–11590 [CrossRef]
    [Google Scholar]
  16. Eckert D. M., Kim P. S. 2001; Mechanisms of viral membrane fusion and its inhibition. Annu Rev Biochem 70:777–810 [CrossRef]
    [Google Scholar]
  17. Empig C. J., Goldsmith M. A. 2002; Association of the caveola vesicular system with cellular entry by filoviruses. J Virol 76:5266–5270 [CrossRef]
    [Google Scholar]
  18. Ferreira L., Villar E., Muñoz-Barroso I. 2004; Gangliosides and N-glycoproteins function as Newcastle disease virus receptors. Int J Biochem Cell Biol 36:2344–2356 [CrossRef]
    [Google Scholar]
  19. Garcia-Sastre A., Cabezas J. A., Villar E. 1989; Proteins of Newcastle disease virus envelope: interaction between the outer hemagglutinin-neuraminidase glycoprotein and the inner non-glycosylated matrix protein. Biochim Biophys Acta 999:171–175 [CrossRef]
    [Google Scholar]
  20. Gilbert J. M., Benjamin T. L. 2000; Early steps of polyomavirus entry into cells. J Virol 74:8582–8588 [CrossRef]
    [Google Scholar]
  21. Hoekstra D., de Boer T., Klappe K., Wilschut J. 1984; Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry 23:5675–5681 [CrossRef]
    [Google Scholar]
  22. Hunt R. C., Marshall-Carlson L. 1986; Internalization and recycling of transferrin and its receptor. Effect of trifluoperazine on recycling in human erythroleukemic cells. J Biol Chem 261:3681–3686
    [Google Scholar]
  23. Jardetzky T. S., Lamb R. A. 2004; Virology: a class act. Nature 427:307–308 [CrossRef]
    [Google Scholar]
  24. Jin M., Park J., Lee S., Park B., Shin J., Song K. J., Ahn T. I., Hwang S. Y., Ahn B. Y., Ahn K. 2002; Hantaan virus enters cells by clathrin-dependent receptor-mediated endocytosis. Virology 294:60–69 [CrossRef]
    [Google Scholar]
  25. Joki-Korpela P., Marjomaki V., Krogerus C., Heino J., Hyypia T. 2001; Entry of human parechovirus 1. J Virol 75:1958–1967 [CrossRef]
    [Google Scholar]
  26. Kielian M., Rey F. A. 2006; Virus membrane-fusion proteins: more than one way to make a hairpin. Nat Rev Microbiol 4:67–76 [CrossRef]
    [Google Scholar]
  27. Lamb R. A. 1993; Paramyxovirus fusion: a hypothesis for changes. Virology 197:1–11 [CrossRef]
    [Google Scholar]
  28. Lisanti M. P., Tang Z. L., Sargiacomo M. 1993; Caveolin forms a hetero-oligomeric protein complex that interacts with an apical GPI-linked protein: implications for the biogenesis of caveolae. J Cell Biol 123:595–604 [CrossRef]
    [Google Scholar]
  29. Marjomaki V., Pietiainen V., Matilainen H., Upla P., Ivaska J., Nissinen L., Reunanen H., Huttunen P., Hyypia T., Heino J. 2002; Internalization of echovirus 1 in caveolae. J Virol 76:1856–1865 [CrossRef]
    [Google Scholar]
  30. Marsh M., Helenius A. 1980; Adsorptive endocytosis of Semliki Forest virus. J Mol Biol 142:439–454 [CrossRef]
    [Google Scholar]
  31. Marsh M., Helenius A. 1989; Virus entry into animal cells. Adv Virus Res 36:107–151
    [Google Scholar]
  32. Marsh M., Helenius A. 2006; Virus entry: open sesame. Cell 124:729–740 [CrossRef]
    [Google Scholar]
  33. Matlin K. S., Reggio H., Helenius A., Simons K. 1981; Infectious entry pathway of influenza virus in a canine kidney cell line. J Cell Biol 91:601–613 [CrossRef]
    [Google Scholar]
  34. Matlin K. S., Reggio H., Helenius A., Simons K. 1982; Pathway of vesicular stomatitis virus entry leading to infection. J Mol Biol 156:609–631 [CrossRef]
    [Google Scholar]
  35. Matsuyama S., Delos S. E., White J. M. 2004; Sequential roles of receptor binding and low pH in forming prehairpin and hairpin conformations of a retroviral envelope glycoprotein. J Virol 78:8201–8209 [CrossRef]
    [Google Scholar]
  36. Melikyan G. B., Barnard R. J., Markosyan R. M., Young J. A., Cohen F. S. 2004; Low pH is required for avian sarcoma and leukosis virus Env-induced hemifusion and fusion pore formation but not for pore growth. J Virol 78:3753–3762 [CrossRef]
    [Google Scholar]
  37. Meulendyke K. A., Wurth M. A., McCann R. O., Dutch R. E. 2005; Endocytosis plays a critical role in proteolytic processing of the Hendra virus fusion protein. J Virol 79:12643–12649 [CrossRef]
    [Google Scholar]
  38. Miller N., Hutt-Fletcher L. M. 1992; Epstein-Barr virus enters B cells and epithelial cells by different routes. J Virol 66:3409–3414
    [Google Scholar]
  39. Milne R. S., Nicola A. V., Whitbeck J. C., Eisenberg R. J., Cohen G. H. 2005; Glycoprotein D receptor-dependent, low-pH-independent endocytic entry of herpes simplex virus type 1. J Virol 79:6655–6663 [CrossRef]
    [Google Scholar]
  40. Mothes W., Boerger A. L., Narayan S., Cunningham J. M., Young J. A. 2000; Retroviral entry mediated by receptor priming and low pH triggering of an envelope glycoprotein. Cell 103:679–689 [CrossRef]
    [Google Scholar]
  41. Nicola A. V., McEvoy A. M., Straus S. E. 2003; Roles for endocytosis and low pH in herpes simplex virus entry into HeLa and Chinese hamster ovary cells. J Virol 77:5324–5332 [CrossRef]
    [Google Scholar]
  42. Nunes-Correia I., Eulalio A., Nir S., Pedroso de Lima M. C. 2004; Caveolae as an additional route for influenza virus endocytosis in MDCK cells. Cell Mol Biol Lett 9:47–60
    [Google Scholar]
  43. Parker J. S., Parrish C. R. 2000; Cellular uptake and infection by canine parvovirus involves rapid dynamin-regulated clathrin-mediated endocytosis, followed by slower intracellular trafficking. J Virol 74:1919–1930 [CrossRef]
    [Google Scholar]
  44. Pelkmans L., Helenius A. 2003; Insider information: what viruses tell us about endocytosis. Curr Opin Cell Biol 15:414–422 [CrossRef]
    [Google Scholar]
  45. Pelkmans L., Kartenbeck J., Helenius A. 2001; Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3:473–483 [CrossRef]
    [Google Scholar]
  46. Pho M. T., Ashok A., Atwood W. J. 2000; JC virus enters human glial cells by clathrin-dependent receptor-mediated endocytosis. J Virol 74:2288–2292 [CrossRef]
    [Google Scholar]
  47. Porotto M., Murrell M., Greengard O., Moscona A. 2003; Triggering of human parainfluenza virus 3 fusion protein (F) by the hemagglutinin-neuraminidase (HN) protein: an HN mutation diminishes the rate of F activation and fusion. J Virol 77:3647–3654 [CrossRef]
    [Google Scholar]
  48. Porotto M., Fornabaio M., Greengard O., Murrell M. T., Kellogg G. E., Moscona A. 2006; Paramyxovirus receptor-binding molecules: engagement of one site on the hemagglutinin-neuraminidase protein modulates activity at the second site. J Virol 80:1204–1213 [CrossRef]
    [Google Scholar]
  49. Rodal S. K., Skretting G., Garred O., Vilhardt F., van Deurs B., Sandvig K. 1999; Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell 10:961–974 [CrossRef]
    [Google Scholar]
  50. Rothberg K. G., Ying Y. S., Kamen B. A., Anderson R. G. 1990; Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahydrofolate. J Cell Biol 111:2931–2938 [CrossRef]
    [Google Scholar]
  51. Roy A. M., Parker J. S., Parrish C. R., Whittaker G. R. 2000; Early stages of influenza virus entry into Mv-1 lung cells: involvement of dynamin. Virology 267:17–28 [CrossRef]
    [Google Scholar]
  52. Russell C. J., Jardetzky T. S., Lamb R. A. 2001; Membrane fusion machines of paramyxoviruses: capture of intermediates of fusion. EMBO J 20:4024–4034 [CrossRef]
    [Google Scholar]
  53. Ryan C., Zaitsev V., Tindal D. J., Dyason J. C., Thomson R. J., Alymova I., Portner A., Itzstein M., Taylor G. 2006; Structural analysis of a designed inhibitor complexed with the hemagglutinin-neuraminidase of Newcastle disease virus. Glycoconj J 23:135–141 [CrossRef]
    [Google Scholar]
  54. Sanchez-San Martin C., Lopez T., Arias C. F., Lopez S. 2004; Characterization of rotavirus cell entry. J Virol 78:2310–2318 [CrossRef]
    [Google Scholar]
  55. San Roman K., Villar E., Muñoz-Barroso I. 1999; Acidic pH enhancement of the fusion of Newcastle disease virus with cultured cells. Virology 260:329–341 [CrossRef]
    [Google Scholar]
  56. San Roman K., Villar E., Muñoz-Barroso I. 2002; Mode of action of two inhibitory peptides from heptad repeat domains of the fusion protein of Newcastle disease virus. Int J Biochem Cell Biol 34:1207–1220 [CrossRef]
    [Google Scholar]
  57. Schibli D. J., Weissenhorn W. 2004; Class I and class II viral fusion protein structures reveal similar principles in membrane fusion. Mol Membr Biol 21:361–371 [CrossRef]
    [Google Scholar]
  58. Sergel T. A., McGinnes L. W., Morrison T. G. 2000; A single amino acid change in the Newcastle disease virus fusion protein alters the requirement for HN protein in fusion. J Virol 74:5101–5107 [CrossRef]
    [Google Scholar]
  59. Seth S., Vincent A., Compans R. W. 2003; Activation of fusion by the SER virus F protein: a low-pH-dependent paramyxovirus entry process. J Virol 77:6520–6527 [CrossRef]
    [Google Scholar]
  60. Sieczkarski S. B., Whittaker G. R. 2002a; Dissecting virus entry via endocytosis. J Gen Virol 83:1535–1545
    [Google Scholar]
  61. Sieczkarski S. B., Whittaker G. R. 2002b; Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis. J Virol 76:10455–10464 [CrossRef]
    [Google Scholar]
  62. Simmons G., Gosalia D. N., Rennekamp A. J., Reeves J. D., Diamond S. L., Bates P. 2005; Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci U S A 102:11876–11881 [CrossRef]
    [Google Scholar]
  63. Stuart A. D., Eustace H. E., McKee T. A., Brown T. D. 2002; A novel cell entry pathway for a DAF-using human enterovirus is dependent on lipid rafts. J Virol 76:9307–9322 [CrossRef]
    [Google Scholar]
  64. Subtil A., Gaidarov I., Kobylarz K., Lampson M. A., Keen J. H., McGraw T. E. 1999; Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc Natl Acad Sci U S A 96:6775–6780 [CrossRef]
    [Google Scholar]
  65. Sun X., Yau V. K., Briggs B. J., Whittaker G. R. 2005; Role of the clathrin-mediated endocytosis during vesicular stomatitis virus entry into host cells. Virology 338:53–60 [CrossRef]
    [Google Scholar]
  66. Townsley A. C., Weisberg A. S., Wagenaar T. R., Moss B. 2006; Vaccinia virus entry into cells via a low-pH-dependent endosomal pathway. J Virol 80:8899–8908 [CrossRef]
    [Google Scholar]
  67. Wang L. H., Rothberg K. G., Anderson R. G. 1993; Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol 123:1107–1117 [CrossRef]
    [Google Scholar]
  68. White J., Kielian M., Helenius A. 1983; Membrane fusion proteins of enveloped animal viruses. Q Rev Biophys 16:151–195 [CrossRef]
    [Google Scholar]
  69. Young J. K., Hicks R. P., Wright G. E., Morrison T. G. 1997; Analysis of a peptide inhibitor of paramyxovirus (NDV) fusion using biological assays, NMR, and molecular modeling. Virology 238:291–304 [CrossRef]
    [Google Scholar]
  70. Zaitsev V., von Itzstein M., Groves D., Kiefel M., Takimoto T., Portner A., Taylor G. 2004; Second sialic acid binding site in Newcastle disease virus hemagglutinin-neuraminidase: implications for fusion. J Virol 78:3733–3741 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82150-0
Loading
/content/journal/jgv/10.1099/vir.0.82150-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error