1887

Abstract

The 3′ untranslated region (UTR) of turnip crinkle virus (TCV) RNA is 253 nt long (nt 3798–4050) with a 27 nt hairpin structure near its 3′ terminus. In this study, the roles of the 3′ UTR in virus accumulation were investigated in protoplasts of L. and (L.) Heynh. Our results showed that, in protoplasts, the minimal 3′ UTR essential for TCV accumulation extends from nt 3922 to 4050, but that maintenance of virus accumulation at wild-type (wt) levels requires the full-length 3′ UTR. However, in protoplasts, only 33 nt (nt 4018–4050) at the 3′ extremity of the UTR is required for wt levels of accumulation, whereas other parts of the 3′ UTR are dispensable. The 27 nt hairpin within the 33 nt region is essential for virus accumulation in both and protoplasts. However, transposition of nucleotides in base pairs within the upper or lower stems has no effect on virus accumulation in either or protoplasts, and alterations of the loop sequence also fail to affect replication. Disruption of the upper or lower stems and deletion of the loop sequence reduce viral accumulation in protoplasts, but abolish virus accumulation in protoplasts completely. These results indicate that strict conservation of the hairpin structure is more important for replication in than in protoplasts. In conclusion, both the 3′ UTR primary sequence and the 3′-terminal hairpin structure influence TCV accumulation in a host-dependent manner.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82536-0
2007-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/2/680.html?itemId=/content/journal/jgv/10.1099/vir.0.82536-0&mimeType=html&fmt=ahah

References

  1. Batten J. S., Desvoyes B., Yamamura Y., Scholthof K.-B. G. 2006; A translational enhancer element on the 3′-proximal end of the Panicum mosaic virus genome. FEBS Lett 580:2591–2597 [CrossRef]
    [Google Scholar]
  2. Brown D. M., Kauder S. E., Cornell C. T., Jang G. M., Racaniello V. R., Semler B. L. 2004; Cell-dependent role for the poliovirus 3′ noncoding region in positive-strand RNA synthesis. J Virol 78:1344–1351 [CrossRef]
    [Google Scholar]
  3. Buck K. W. 1996; Comparison of the replication of positive-stranded RNA virues of plants and animals. Adv Virus Res 47:159–251
    [Google Scholar]
  4. Carpenter C. D., Simon A. E. 1998; Analysis of sequences and predicted structures required for viral satellite RNA accumulation by in vivo genetic selection. Nucleic Acids Res 26:2426–2432 [CrossRef]
    [Google Scholar]
  5. Carrington J. C., Heaton L. A., Zuidema D., Hillman B. I., Morris T. J. 1989; The genome structure of turnip crinkle virus. Virology 170:219–226 [CrossRef]
    [Google Scholar]
  6. Chapman M. R., Kao C. C. 1999; A minimal RNA promoter for minus-strand RNA synthesis by the brome mosaic virus polymerase complex. J Mol Biol 286:709–720 [CrossRef]
    [Google Scholar]
  7. Chen I.-H., Meng M. H., Hsu Y. H., Tsai C. H. 2003; Functional analysis of the cloverleaf-like structure in the 3′ untranslated region of bamboo mosaic potexvirus RNA revealed dual roles in viral RNA replication and long distance movement. Virology 315:415–424 [CrossRef]
    [Google Scholar]
  8. Cheng J. H., Peng C. W., Hsu Y. H., Tsai C. H. 2002; The synthesis of minus-strand RNA of bamboo mosaic potexvirus initiates from multiple sites within the poly(A) tail. J Virol 76:6114–6120 [CrossRef]
    [Google Scholar]
  9. Choi Y. G., Dreher T. W., Rao A. L. 2002; tRNA elements mediate the assembly of an icosahedral RNA virus. Proc Natl Acad Sci U S A 99:655–660 [CrossRef]
    [Google Scholar]
  10. Damm B., Willmitzer L. 1991; Arabidopsis protoplast transformation and regeneration. In Plant Tissue Culture Manual vol A7 pp  1–17 Edited by Lindsey K. Dordrecht: Kluwer Academic Publishers;
    [Google Scholar]
  11. Dreher T. W. 1999; Functions of the 3′-untranslated regions of positive strand RNA viral genomes. Annu Rev Phytopathol 37:151–174 [CrossRef]
    [Google Scholar]
  12. Dreher T. W., Hall T. C. 1988; Mutational analysis of the sequence and structural requirements in brome mosaic virus RNA for minus strand promoter activity. J Mol Biol 201:31–40 [CrossRef]
    [Google Scholar]
  13. Dreher T. W., Rao A. L., Hall T. C. 1989; Replication in vivo of mutant brome mosaic virus RNAs defective in aminoacylation. J Mol Biol 206:425–438 [CrossRef]
    [Google Scholar]
  14. Fayzulin R., Frolov I. 2004; Changes of the secondary structure of the 5′ end of the Sindbis virus genome inhibit virus growth in mosquito cells and lead to accumulation of adaptive mutations. J Virol 78:4953–4964 [CrossRef]
    [Google Scholar]
  15. Gallie D. R., Kobayashi M. 1994; The role of the 3′-untranslated region of non-polyadenylated plant viral mRNAs in regulating translational efficiency. Gene 142:159–165 [CrossRef]
    [Google Scholar]
  16. Gallie D. R., Walbot V. 1990; RNA pseudoknot domain of tobacco mosaic virus can functionally substitute for a poly(A) tail in plant and animal cells. Genes Dev 4:1149–1157 [CrossRef]
    [Google Scholar]
  17. Guo L., Allen A. M., Miller W. A. 2001; Base-pairing between untranslated regions facilitates translation of uncapped, nonpolyadenylated viral RNA. Mol Cell 7:1103–1109 [CrossRef]
    [Google Scholar]
  18. Haasnoot P. C., Olsthoorn R. C., Bol J. F. 2002; The Brome mosaic virus subgenomic promoter hairpin is structurally similar to the iron-responsive element and functionally equivalent to the minus-strand core promoter stem-loop C. RNA 8:110–122 [CrossRef]
    [Google Scholar]
  19. Hardy R. W., Rice C. M. 2005; Requirements at the 3′ end of the sindbis virus genome for efficient synthesis of minus-strand RNA. J Virol 79:4630–4639 [CrossRef]
    [Google Scholar]
  20. Havelda Z., Burgyan J. 1995; 3′ terminal putative stem-loop structure required for the accumulation of cymbidium ringspot viral RNA. Virology 214:269–272 [CrossRef]
    [Google Scholar]
  21. Heaton L. A., Carrington J. C., Morris T. J. 1989; Turnip crinkle virus infection from RNA synthesized in vitro. Virology 170:214–218 [CrossRef]
    [Google Scholar]
  22. Holden K. L., Harris E. 2004; Enhancement of dengue virus translation: role of the 3′ untranslated region and the terminal 3′ stem-loop domain. Virology 329:119–133 [CrossRef]
    [Google Scholar]
  23. Koh D. C.-Y., Liu D. X., Wong S.-M. 2002; A six-nucleotide segment within the 3′ untranslated region of Hibiscus chlorotic ringspot virus plays an essential role in translational enhancement. J Virol 76:1144–1153 [CrossRef]
    [Google Scholar]
  24. Koh D. C., Wong S. M., Liu D. X. 2003; Synergism of the 3′-untranslated region and an internal ribosome entry site differentially enhances the translation of a plant virus coat protein. J Biol Chem 278:20565–20573 [CrossRef]
    [Google Scholar]
  25. Kneller E. L., Rakotondrafara A. M., Miller W. A. 2006; Cap-independent translation of plant viral RNAs. Virus Res 119:63–75 [CrossRef]
    [Google Scholar]
  26. Kushner D. B., Lindenbach B. D., Grdzelishvili V. Z., Noueiry A. O., Paul S. M., Ahlquist P. 2003; Systematic, genome-wide identification of host genes affecting replication of a positive-strand RNA virus. Proc Natl Acad Sci U S A 100:15764–15769 [CrossRef]
    [Google Scholar]
  27. Lai M. M. 1998; Cellular factors in the transcription and replication of viral RNA genomes: a parallel to DNA-dependent RNA transcription. Virology 244:1–12 [CrossRef]
    [Google Scholar]
  28. Li W., Wong S. M. 2006; Analyses of subgenomic promoters of Hibiscus chlorotic ringspot virus and demonstration of 5′ untranslated region and 3′-terminal sequences functioning as subgenomic promoters. J Virol 80:3395–3405 [CrossRef]
    [Google Scholar]
  29. Liang X., Ding S., Wong S. 2002; Development of a kenaf ( Hibiscus cannabinus L.) protoplast system for replication study of Hibiscus chlorotic ringspot virus. Plant Cell Rep 20:982–986 [CrossRef]
    [Google Scholar]
  30. Lin Y. J., Liao C. L., Lai M. M. 1994; Identification of the cis-acting signal for minus-strand RNA synthesis of a murine coronavirus: implications for the role of minus-strand RNA in RNA replication and transcription. J Virol 68:8131–8140
    [Google Scholar]
  31. Na H., White K. A. 2006; Structure and prevalence of replication silencer–3′ terminus RNA interactions in Tombusviridae . Virology 345:305–316 [CrossRef]
    [Google Scholar]
  32. Olsthoorn R. C., Haasnoot P. C., Bol J. F. 2004; Similarities and differences between the subgenomic and minus-strand promoters of an RNA plant virus. J Virol 78:4048–4053 [CrossRef]
    [Google Scholar]
  33. Panavas T., Serviene E., Brasher J., Nagy P. D. 2005; Yeast genome-wide screen reveals dissimilar sets of host genes affecting replication of RNA viruses. Proc Natl Acad Sci U S A 102:7326–7331 [CrossRef]
    [Google Scholar]
  34. Panaviene Z., Panavas T., Serva S., Nagy P. D. 2004; Purification of the cucumber necrosis virus replicase from yeast cells: role of coexpressed viral RNA in stimulation of replicase activity. J Virol 78:8254–8263 [CrossRef]
    [Google Scholar]
  35. Panaviene Z., Panavas T., Nagy P. D. 2005; Role of an internal and two 3′-terminal RNA elements in assembly of tombusvirus replicase. J Virol 79:10608–10618 [CrossRef]
    [Google Scholar]
  36. Proutski V., Gritsun T. S., Gould E. A., Holmes E. C. 1999; Biological consequences of deletions within the 3′-untranslated region of flaviviruses may be due to rearrangements of RNA secondary structure. Virus Res 64:107–123 [CrossRef]
    [Google Scholar]
  37. Qi Y., Ding B. 2002; Replication of potato spindle tuber viroid in cultured cells of tobacco and Nicotiana benthamiana : the role of specific nucleotides in determining replication levels for host adaptation. Virology 302:445–456 [CrossRef]
    [Google Scholar]
  38. Qu F., Morris T. J. 2000; Cap-independent translational enhancement of turnip crinkle virus genomic and subgenomic RNAs. J Virol 74:1085–1093 [CrossRef]
    [Google Scholar]
  39. Quadt R., Ishikawa M., Janda M., Ahlquist P. 1995; Formation of brome mosaic virus RNA-dependent RNA polymerase in yeast requires coexpression of viral proteins and viral RNA. Proc Natl Acad Sci U S A 92:4892–4896 [CrossRef]
    [Google Scholar]
  40. Rao A. L., Dreher T. W., Marsh L. E., Hall T. 1989; Telomeric function of the tRNA-like structure of brome mosaic virus RNA. Proc Natl Acad Sci U S A 86:5335–5359 [CrossRef]
    [Google Scholar]
  41. Scheets K., Redinbaugh M. G. 2006; Infectious cDNA transcripts of maize necrotic streak virus: infectivity and translational characteristics. Virology 350:171–183 [CrossRef]
    [Google Scholar]
  42. Scholthof H. B., Jackson A. O. 1997; The enigma of pX: a host-dependent cis-acting element with variable effects on tombusvirus RNA accumulation. Virology 237:56–65 [CrossRef]
    [Google Scholar]
  43. Serva S., Nagy P. D. 2006; Proteomics analysis of the tombusvirus replicase: Hsp70 molecular chaperone is associated with the replicase and enhances viral RNA replication. J Virol 80:2162–2169 [CrossRef]
    [Google Scholar]
  44. Shen R., Miller W. A. 2004; The 3′ untranslated region of tobacco necrosis virus RNA contains a barley yellow dwarf virus-like cap-independent translation element. J Virol 78:4655–4664 [CrossRef]
    [Google Scholar]
  45. Simon A. E. 1999; Replication, recombination, and symptom-modulation properties of the satellite RNAs of turnip crinkle virus. Curr Top Microbiol Immunol 239:19–36
    [Google Scholar]
  46. Sivakumaran K., Choi S. K., Hema M., Kao C. C. 2004; Requirements for brome mosaic virus subgenomic RNA synthesis in vivo and replicase-core promoter interactions in vitro. J Virol 78:6091–6101 [CrossRef]
    [Google Scholar]
  47. Sleat D. E., Palukaitis P. 1992; A single nucleotide change within a plant virus satellite RNA alters the host specificity of disease induction. Plant J 2:43–49
    [Google Scholar]
  48. Song C., Simon A. E. 1995; Requirement of a 3′-terminal stem-loop in in vitro transcription by an RNA-dependent RNA polymerase. J Mol Biol 254:6–14 [CrossRef]
    [Google Scholar]
  49. Stupina V., Simon A. E. 1997; Analysis in vivo of turnip crinkle virus satellite RNA C variants with mutations in the 3′-terminal minus-strand promoter. Virology 238:470–477 [CrossRef]
    [Google Scholar]
  50. Todd S., Towner J. S., Brown D. M., Semler B. L. 1997; Replication-competent picornaviruses with complete genomic RNA 3′ noncoding region deletions. J Virol 71:8868–8874
    [Google Scholar]
  51. van Rossum C. M. A., Reusken C. B. E. M., Brederode F. Th., Bol J. F. 1997; The 3′ untranslated region of alfalfa mosaic virus RNA3 contains a core promoter for minus-strand RNA synthesis and an enhancer element. J Gen Virol 78:3045–3049
    [Google Scholar]
  52. Wang H.-H., Wong S.-M. 2004; Significance of the 3′ terminal region in minus-strand RNA synthesis of Hibiscus chlorotic ringspot virus . J Gen Virol 85:1763–1776 [CrossRef]
    [Google Scholar]
  53. Wassenegger M., Spieker R. L., Thalmeir S., Gast F. U., Riedel L., Sanger H. L. 1996; A single nucleotide substitution converts potato spindle tuber viroid (PSTVd) from a noninfectious to an infectious RNA for Nicotiana tabacum . Virology 226:191–197 [CrossRef]
    [Google Scholar]
  54. Yu L., Markoff L. 2005; The topology of bulges in the long stem of the flavivirus 3′ stem-loop is a major determinant of RNA replication competence. J Virol 79:2309–2324 [CrossRef]
    [Google Scholar]
  55. Zhang G., Zhang J. C., Simon A. E. 2004; Repression and derepression of minus-strand synthesis in a plus-strand RNA virus replicon. J Virol 78:7619–7633 [CrossRef]
    [Google Scholar]
  56. Zuker M. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82536-0
Loading
/content/journal/jgv/10.1099/vir.0.82536-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error