1887

Abstract

Assembly and release of particles comprise a late step in virus–host cell interactions. Though it may share major biological properties with its orthologues in related viruses, trafficking and oligomerization of the matrix (M) protein of (MV) and its relative contribution to assembly and budding of particles from particular host cells have not been addressed in more detail. Plasmid-driven expression of authentic and mutant M proteins revealed that the amino acid at position 89, an important adaptation determinant for growth of attenuated strains in Vero cells, influences the electrophoretic mobility but not the intracellular distribution of M proteins, nor their ability to oligomerize or migrate as a doublet band in SDS-PAGE. M proteins were found to co-float with detergent-resistant membrane fractions (DRM) and this was enhanced upon co-expression of the F protein. In contrast to their DRM association, the ability of M proteins to promote release of virus-like particles (VLPs) was not affected by the presence of F proteins, which on their own also efficiently promoted VLP production. Thus, DRM recruitment of MV F and M proteins and their ability to drive particle formation are not correlated.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82578-0
2007-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/4/1243.html?itemId=/content/journal/jgv/10.1099/vir.0.82578-0&mimeType=html&fmt=ahah

References

  1. Billeter M. A., Cattaneo R., Spielhofer P., Kaelin K., Huber M., Schmid A., Baczko K., ter Meulen V. 1994; Generation and properties of measles virus mutations typically associated with subacute sclerosing panencephalitis. Ann N Y Acad Sci 724:367–377 [CrossRef]
    [Google Scholar]
  2. Caballero M., Carabana J., Ortego J., Fernandez-Munoz R., Celma M. L. 1998; Measles virus fusion protein is palmitoylated on transmembrane-intracytoplasmic cysteine residues which participate in cell fusion. J Virol 72:8198–8204
    [Google Scholar]
  3. Cathomen T., Mrkic B., Spehner D., Drillien R., Naef R., Pavlovic J., Aguzzi A., Billeter M. A., Cattaneo R. 1998a; A matrix-less measles virus is infectious and elicits extensive cell fusion: consequences for propagation in the brain. EMBO J 17:3899–3908 [CrossRef]
    [Google Scholar]
  4. Cathomen T., Naim H., Cattaneo R. 1998b; Measles viruses with altered envelope protein cytoplasmic tails gain cell fusion competence. J Virol 72:1224–1234
    [Google Scholar]
  5. Clements C. J., Cutts F. T. 1995; The epidemiology of measles: thirty years of vaccination. Curr Top Microbiol Immunol 191:13–33
    [Google Scholar]
  6. Demirov D. G., Freed E. O. 2004; Retrovirus budding. Virus Res 106:87–102 [CrossRef]
    [Google Scholar]
  7. Dorig R. E., Marcil A., Chopra A., Richardson C. D. 1993; The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75:295–305 [CrossRef]
    [Google Scholar]
  8. Freed E. O. 2002; Viral late domains. J Virol 76:4679–4687 [CrossRef]
    [Google Scholar]
  9. Gomis-Ruth F. X., Dessen A., Timmins J., Bracher A., Kolesnikowa L., Becker S., Klenk H. D., Weissenhorn W. 2003; The matrix protein VP40 from Ebola virus octamerizes into pore-like structures with specific RNA binding properties. Structure 11:423–433 [CrossRef]
    [Google Scholar]
  10. Hartlieb B., Weissenhorn W. 2006; Filovirus assembly and budding. Virology 344:64–70 [CrossRef]
    [Google Scholar]
  11. Helin E., Salmi A. A., Vanharanta R., Vainionpaa R. 1999; Measles virus replication in cells of myelomonocytic lineage is dependent on cellular differentiation stage. Virology 253:35–42 [CrossRef]
    [Google Scholar]
  12. Hoenen T., Volchkov V., Kolesnikova L., Mittler E., Timmins J., Ottmann M., Reynard O., Becker S., Weissenhorn W. 2005; VP40 octamers are essential for Ebola virus replication. J Virol 79:1898–1905 [CrossRef]
    [Google Scholar]
  13. Horikami S. M., Moyer S. A. 1995; Structure, transcription, and replication of measles virus. Curr Top Microbiol Immunol 191:35–50
    [Google Scholar]
  14. Kolesnikova L., Bamberg S., Berghofer B., Becker S. 2004a; The matrix protein of Marburg virus is transported to the plasma membrane along cellular membranes: exploiting the retrograde late endosomal pathway. J Virol 78:2382–2393 [CrossRef]
    [Google Scholar]
  15. Kolesnikova L., Berghofer B., Bamberg S., Becker S. 2004b; Multivesicular bodies as a platform for formation of the Marburg virus envelope. J Virol 78:12277–12287 [CrossRef]
    [Google Scholar]
  16. Licata J. M., Johnson R. F., Han Z., Harty R. N. 2004; Contribution of ebola virus glycoprotein, nucleoprotein, and VP24 to budding of VP40 virus-like particles. J Virol 78:7344–7351 [CrossRef]
    [Google Scholar]
  17. Manie S. N., Debreyne S., Vincent S., Gerlier D. 2000; Measles virus structural components are enriched into lipid raft microdomains: a potential cellular location for virus assembly. J Virol 74:305–311 [CrossRef]
    [Google Scholar]
  18. Martin-Serrano J., Perez-Caballero D., Bieniasz P. D. 2004; Context-dependent effects of L domains and ubiquitination on viral budding. J Virol 78:5554–5563 [CrossRef]
    [Google Scholar]
  19. Martin-Serrano J., Eastman S. W., Chung W., Bieniasz P. D. 2005; HECT ubiquitin ligases link viral and cellular PPXY motifs to the vacuolar protein-sorting pathway. J Cell Biol 168:89–101
    [Google Scholar]
  20. Miyajima N., Takeda M., Tashiro M., Hashimoto K., Yanagi Y., Nagata K., Takeuchi K. 2004; Cell tropism of wild-type measles virus is affected by amino acid substitutions in the P, V and M proteins, or by a truncation in the C protein. J Gen Virol 85:3001–3006 [CrossRef]
    [Google Scholar]
  21. Moll M., Klenk H. D., Maisner A. 2002; Importance of the cytoplasmic tails of the measles virus glycoproteins for fusogenic activity and the generation of recombinant measles viruses. J Virol 76:7174–7186 [CrossRef]
    [Google Scholar]
  22. Naim H. Y., Ehler E., Billeter M. A. 2000; Measles virus matrix protein specifies apical virus release and glycoprotein sorting in epithelial cells. EMBO J 19:3576–3585 [CrossRef]
    [Google Scholar]
  23. Naniche D., Varior-Krishnan G., Cervoni F., Wild T. F., Rossi B., Rabourdin-Combe C., Gerlier D. 1993; Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 67:6025–6032
    [Google Scholar]
  24. Niewiesk S., Schneider-Schaulies J., Ohnimus H., Jassoy C., Schneider-Schaulies S., Diamond L., Logan J. S., ter Meulen V. 1997; CD46 expression does not overcome the intracellular block of measles virus replication in transgenic rats. J Virol 71:7969–7973
    [Google Scholar]
  25. Panchal R. G., Ruthel G., Kenny T. A., Kallstrom G. H., Lane D., Badie S. S., Li L., Bavari S., Aman M. J. 2003; In vivo oligomerization and raft localization of Ebola virus protein VP40 during vesicular budding. Proc Natl Acad Sci U S A 100:15936–15941 [CrossRef]
    [Google Scholar]
  26. Riedl P., Moll M., Klenk H. D., Maisner A. 2002; Measles virus matrix protein is not cotransported with the viral glycoproteins but requires virus infection for efficient surface targeting. Virus Res 83:1–12 [CrossRef]
    [Google Scholar]
  27. Rima B. K. 1983; The proteins of morbilliviruses. J Gen Virol 64:1205–1219 [CrossRef]
    [Google Scholar]
  28. Rima B. K. 1996; Viruses in the RNA world. Biochem Soc Trans 24:1–13
    [Google Scholar]
  29. Rima B. K., Duprex W. P. 2005; Molecular mechanisms of measles virus persistence. Virus Res 111:132–147 [CrossRef]
    [Google Scholar]
  30. Rima B. K., Martin S. J., Gould E. A. 1979; A comparison of polypeptides in measles and SSPE virus strains. J Gen Virol 42:603–608 [CrossRef]
    [Google Scholar]
  31. Rima B. K., Earle J. A., Baczko K., Rota P. A., Bellini W. J. 1995; Measles virus strain variations. Curr Top Microbiol Immunol 191:65–83
    [Google Scholar]
  32. Schmitt A. P., Leser G. P., Morita E., Sundquist W. I., Lamb R. A. 2005; Evidence for a new viral late-domain core sequence, FPIV, necessary for budding of a paramyxovirus. J Virol 79:2988–2997 [CrossRef]
    [Google Scholar]
  33. Schneider-Schaulies S., Schneider-Schaulies J., Bayer M., Loffler S., ter Meulen V. 1993; Spontaneous and differentiation-dependent regulation of measles virus gene expression in human glial cells. J Virol 67:3375–3383
    [Google Scholar]
  34. Schneider-Schaulies S., Schneider-Schaulies J., Dunster L. M., ter Meulen V. 1995; Measles virus gene expression in neural cells. Curr Top Microbiol Immunol 191:101–116
    [Google Scholar]
  35. Schneider-Schaulies J., ter Meulen V., Schneider-Schaulies S. 2001; Measles virus interactions with cellular receptors: consequences for viral pathogenesis. J Neurovirol 7:391–399 [CrossRef]
    [Google Scholar]
  36. Schneider-Schaulies J., Meulen V., Schneider-Schaulies S. 2003; Measles infection of the central nervous system. J Neurovirol 9:247–252 [CrossRef]
    [Google Scholar]
  37. Spielhofer P., Bachi T., Fehr T., Christiansen G., Cattaneo R., Kaelin K., Billeter M. A., Naim H. Y. 1998; Chimeric measles viruses with a foreign envelope. J Virol 72:2150–2159
    [Google Scholar]
  38. Strack B., Calistri A., Accola M. A., Palu G., Gottlinger H. G. 2000; A role for ubiquitin ligase recruitment in retrovirus release. Proc Natl Acad Sci U S A 97:13063–13068 [CrossRef]
    [Google Scholar]
  39. Strack B., Calistri A., Gottlinger H. G. 2002; Late assembly domain function can exhibit context dependence and involves ubiquitin residues implicated in endocytosis. J Virol 76:5472–5479 [CrossRef]
    [Google Scholar]
  40. Tahara M., Takeda M., Yanagi Y. 2005; Contributions of matrix and large protein genes of the measles virus edmonston strain to growth in cultured cells as revealed by recombinant viruses. J Virol 79:15218–15225 [CrossRef]
    [Google Scholar]
  41. Takimoto T., Portner A. 2004; Molecular mechanism of paramyxovirus budding. Virus Res 106:133–145 [CrossRef]
    [Google Scholar]
  42. Takimoto T., Murti K. G., Bousse T., Scroggs R. A., Portner A. 2001; Role of matrix and fusion proteins in budding of Sendai virus. J Virol 75:11384–11391 [CrossRef]
    [Google Scholar]
  43. Tatsuo H., Ono N., Tanaka K., Yanagi Y. 2000; SLAM (CDw150) is a cellular receptor for measles virus. Nature 406:893–897 [CrossRef]
    [Google Scholar]
  44. Timmins J., Schoehn G., Kohlhaas C., Klenk H. D., Ruigrok R. W., Weissenhorn W. 2003; Oligomerization and polymerization of the filovirus matrix protein VP40. Virology 312:359–368 [CrossRef]
    [Google Scholar]
  45. Timmins J., Ruigrok R. W., Weissenhorn W. 2004; Structural studies on the Ebola virus matrix protein VP40 indicate that matrix proteins of enveloped RNA viruses are analogues but not homologues. FEMS Microbiol Lett 233:179–186 [CrossRef]
    [Google Scholar]
  46. Vincent S., Spehner D., Manie S., Delorme R., Drillien R., Gerlier D. 1999; Inefficient measles virus budding in murine L.CD46 fibroblasts. Virology 265:185–195 [CrossRef]
    [Google Scholar]
  47. Vincent S., Gerlier D., Manie S. N. 2000; Measles virus assembly within membrane rafts. J Virol 74:9911–9915 [CrossRef]
    [Google Scholar]
  48. Vincent S., Tigaud I., Schneider H., Buchholz C. J., Yanagi Y., Gerlier D. 2002; Restriction of measles virus RNA synthesis by a mouse host cell line: trans-complementation by polymerase components or a human cellular factor(s). J Virol 76:6121–6130 [CrossRef]
    [Google Scholar]
  49. Wild T. F., Buckland R. 1995; Functional aspects of envelope-associated measles virus proteins. Curr Top Microbiol Immunol 191:51–64
    [Google Scholar]
  50. Yanagi Y., Ono N., Tatsuo H., Hashimoto K., Minagawa H. 2002; Measles virus receptor SLAM (CD150). Virology 299:155–161 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82578-0
Loading
/content/journal/jgv/10.1099/vir.0.82578-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error