1887

Abstract

Quinacrine and related 9-aminoacridine compounds are effective in eliminating the alternatively folded prion protein, termed PrP, from scrapie-infected cultured cells. Clinical evaluations of quinacrine for the treatment of human prion diseases are progressing in the absence of a clear understanding of the molecular mechanism by which prion replication is blocked. Here, insight into the mode of action of 9-aminoacridine compounds was sought by using a chemical proteomics approach to target identification. Cellular macromolecules that bind 9-aminoacridine ligands were affinity-purified from tissue lysates by using a 9-aminoacridine-functionalized solid-phase matrix. Although the 9-aminoacridine matrix was conformationally selective for PrP, it was inefficient: approximately 5 % of PrP was bound under conditions that did not support binding of the cellular isoform, PrP. Our findings suggest that 9-aminoacridine compounds may reduce the PrP burden either by occluding epitopes necessary for templating on the surface of PrP or by altering the stability of PrP oligomers, where a one-to-one stoichiometry is not necessary.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82601-0
2007-04-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/4/1392.html?itemId=/content/journal/jgv/10.1099/vir.0.82601-0&mimeType=html&fmt=ahah

References

  1. Barret A., Tagliavini F., Forloni G., Bate C., Salmona M., Colombo L., De Luigi A., Limido L., Suardi S. other authors 2003; Evaluation of quinacrine treatment for prion diseases. J Virol 77:8462–8469 [CrossRef]
    [Google Scholar]
  2. Burdine L., Kodadek T. 2004; Target identification in chemical genetics: the (often) missing link. Chem Biol 11:593–597 [CrossRef]
    [Google Scholar]
  3. Butler D. A., Scott M. R., Bockman J. M., Borchelt D. R., Taraboulos A., Hsiao K. K., Kingsbury D. T., Prusiner S. B. 1988; Scrapie-infected murine neuroblastoma cells produce protease-resistant prion proteins. J Virol 62:1558–1564
    [Google Scholar]
  4. Carlson G. A., Kingsbury D. T., Goodman P. A., Coleman S., Marshall S. T., DeArmond S., Westaway D., Prusiner S. B. 1986; Linkage of prion protein and scrapie incubation time genes. Cell 46:503–511 [CrossRef]
    [Google Scholar]
  5. Carlson G. A., Ebeling C., Yang S. L., Telling G., Torchia M., Groth D., Westaway D., DeArmond S. J., Prusiner S. B. 1994; Prion isolate specified allotypic interactions between the cellular and scrapie prion proteins in congenic and transgenic mice. Proc Natl Acad Sci U S A 91:5690–5694 [CrossRef]
    [Google Scholar]
  6. Castilla J., Saa P., Soto C. 2005; Detection of prions in blood. Nat Med 11:982–985
    [Google Scholar]
  7. Chandler R. L. 1961; Encephalopathy in mice produced by inoculation with scrapie brain material. Lancet i:1378–1379
    [Google Scholar]
  8. Collins S. J., Lewis V., Brazier M., Hill A. F., Fletcher A., Masters C. L. 2002; Quinacrine does not prolong survival in a murine Creutzfeldt-Jakob disease model. Ann Neurol 52:503–506 [CrossRef]
    [Google Scholar]
  9. Deleault N. R., Lucassen R. W., Supattapone S. 2003; RNA molecules stimulate prion protein conversion. Nature 425:717–720 [CrossRef]
    [Google Scholar]
  10. Dise C. A., Burch J. W., Goodman D. B. 1982; Direct interaction of mepacrine with erythrocyte and platelet membrane phospholipid. J Biol Chem 257:4701–4704
    [Google Scholar]
  11. Doh-Ura K., Iwaki T., Caughey B. 2000; Lysosomotropic agents and cysteine protease inhibitors inhibit scrapie-associated prion protein accumulation. J Virol 74:4894–4897 [CrossRef]
    [Google Scholar]
  12. Doh-ura K., Ishikawa K., Murakami-Kubo I., Sasaki K., Mohri S., Race R., Iwaki T. 2004; Treatment of transmissible spongiform encephalopathy by intraventricular drug infusion in animal models. J Virol 78:4999–5006 [CrossRef]
    [Google Scholar]
  13. Farquhar C. F., Dornan J., Moore R. C., Somerville R. A., Tunstall A. M., Hope J. 1996; Protease-resistant PrP deposition in brain and non-central nervous system tissues of a murine model of bovine spongiform encephalopathy. J Gen Virol 77:1941–1946 [CrossRef]
    [Google Scholar]
  14. Gaugain B., Markovits J., Le Pecq J. B., Roques B. P. 1981; Hydrogen bonding in deoxyribonucleic acid base recognition. I. Proton nuclear magnetic resonance studies of dinucleotide-acridine alkylamide complexes. Biochemistry 20:3035–3042 [CrossRef]
    [Google Scholar]
  15. Girault S., Grellier P., Berecibar A., Maes L., Mouray E., Lemiere P., Debreu M. A., Davioud-Charvet E., Sergheraert C. 2000; Antimalarial, antitrypanosomal, and antileishmanial activities and cytotoxicity of bis(9-amino-6-chloro-2-methoxyacridines): influence of the linker. J Med Chem 43:2646–2654 [CrossRef]
    [Google Scholar]
  16. Klingenstein R., Lober S., Kujala P., Godsave S., Leliveld S. R., Gmeiner P., Peters P. J., Korth C. 2006; Tricyclic antidepressants, quinacrine and a novel, synthetic chimera thereof clear prions by destabilizing detergent-resistant membrane compartments. J Neurochem 98:748 [CrossRef]
    [Google Scholar]
  17. Korth C., May B. C., Cohen F. E., Prusiner S. B. 2001; Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc Natl Acad Sci U S A 98:9836–9841 [CrossRef]
    [Google Scholar]
  18. Lee K. S., Linden R., Prado M. A., Brentani R. R., Martins V. R. 2003; Towards cellular receptors for prions. Rev Med Virol 13:399–408 [CrossRef]
    [Google Scholar]
  19. Lee I. S., Long J. R., Prusiner S. B., Safar J. G. 2005; Selective precipitation of prions by polyoxometalate complexes. J Am Chem Soc 127:13802–13803 [CrossRef]
    [Google Scholar]
  20. Le Pecq J. B., Le Bret M., Barbet J., Roques B. 1975; DNA polyintercalating drugs: DNA binding of diacridine derivatives. Proc Natl Acad Sci U S A 72:2915–2919 [CrossRef]
    [Google Scholar]
  21. Ma K., Sourkes T. L. 1980; Inhibition of diamine oxidase by antimalarial drugs. Agents Actions 10:395–398 [CrossRef]
    [Google Scholar]
  22. Madore N., Smith K. L., Graham C. H., Jen A., Brady K., Hall S., Morris R. 1999; Functionally different GPI proteins are organized in different domains on the neuronal surface. EMBO J 18:6917–6926 [CrossRef]
    [Google Scholar]
  23. Marsh R. F., Kimberlin R. H. 1975; Comparison of scrapie and transmissible mink encephalopathy in hamsters. II. Clinical signs, pathology, and pathogenesis. J Infect Dis 131:104–110 [CrossRef]
    [Google Scholar]
  24. May B. C., Fafarman A. T., Hong S. B., Rogers M., Deady L. W., Prusiner S. B., Cohen F. E. 2003; Potent inhibition of scrapie prion replication in cultured cells by bis-acridines. Proc Natl Acad Sci U S A 100:3416–3421 [CrossRef]
    [Google Scholar]
  25. May B. C., Witkop J., Sherrill J., Anderson M. O., Madrid P. B., Zorn J. A., Prusiner S. B., Cohen F. E., Guy R. K. 2006a; Structure-activity relationship study of 9-aminoacridine compounds in scrapie-infected neuroblastoma cells. Bioorg Med Chem Lett 16:4913–4916 [CrossRef]
    [Google Scholar]
  26. May B. C., Zorn J. A., Witkop J., Sherrill J., Wallace A. C., Legname G., Prusiner S. B., Cohen F. E. 2006b; Structure–activity relationship study of prion inhibition by 2-aminopyridine-3,5-dicarbonitrile-based compounds: parallel synthesis, bioactivity, and in vitro pharmacokinetics. J Med Chem 50:65–73
    [Google Scholar]
  27. Mustonen P., Lehtonen J. Y., Kinnunen P. K. 1998; Binding of quinacrine to acidic phospholipids and pancreatic phospholipase A2. Effects on the catalytic activity of the enzyme. Biochemistry 37:12051–12057 [CrossRef]
    [Google Scholar]
  28. Nazor K. E., Kuhn F., Seward T., Green M., Zwald D., Purro M., Schmid J., Biffiger K., Power A. M. other authors 2005; Immunodetection of disease-associated mutant PrP, which accelerates disease in GSS transgenic mice. EMBO J 24:2472–2480 [CrossRef]
    [Google Scholar]
  29. Oesch B., Westaway D., Walchli M., McKinley M. P., Kent S. B., Aebersold R., Barry R. A., Tempst P., Teplow D. B. other authors 1985; A cellular gene encodes scrapie PrP 27-30 protein. Cell 40:735–746 [CrossRef]
    [Google Scholar]
  30. Pajeva I. K., Wiese M., Cordes H. P., Seydel J. K. 1996; Membrane interactions of some catamphiphilic drugs and relation to their multidrug-resistance-reversing ability. J Cancer Res Clin Oncol 122:27–40 [CrossRef]
    [Google Scholar]
  31. Prusiner S. B. 2004 Prion Biology and Diseases , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  32. Ryou C., Legname G., Peretz D., Craig J. C., Baldwin M. A., Prusiner S. B. 2003; Differential inhibition of prion propagation by enantiomers of quinacrine. Lab Invest 83:837–843 [CrossRef]
    [Google Scholar]
  33. Ryou C., Lessard P., Freyman Y., Guglielmo B. J., Yung L., Baldwin M. A., Craig J. C., DeArmond S., May B. C. H. other authors 2004; In vivo efficacy of quinacrine in animal models of prion disease. In The First International Conference of the Network of Excellence NeuroPrion Paris p– 169 http://www.neuroprion.com/pdf_docs/conferences/prion2004/abstract_book.pdf
    [Google Scholar]
  34. Safar J. G., Kellings K., Serban A., Groth D., Cleaver J. E., Prusiner S. B., Riesner D. 2005a; Search for a prion-specific nucleic acid. J Virol 79:10796–10806 [CrossRef]
    [Google Scholar]
  35. Safar J. G., Geschwind M. D., Deering C., Didorenko S., Sattavat M., Sanchez H., Serban A., Vey M., Baron H. other authors 2005b; Diagnosis of human prion disease. Proc Natl Acad Sci U S A 102:3501–3506 [CrossRef]
    [Google Scholar]
  36. Sebestik J., Safarik M., Stibor I., Hlavacek J. 2006; Acridin-9-yl exchange: a proposal for the action of some 9-aminoacridine drugs. Biopolymers 84:605–614 [CrossRef]
    [Google Scholar]
  37. Spitzmaul G., Dilger J. P., Bouzat C. 2001; The noncompetitive inhibitor quinacrine modifies the desensitization kinetics of muscle acetylcholine receptors. Mol Pharmacol 60:235–243
    [Google Scholar]
  38. Stahl N., Borchelt D. R., Hsiao K., Prusiner S. B. 1987; Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51:229–240 [CrossRef]
    [Google Scholar]
  39. Stuhlmeier K. M. 2003; Mepacrine inhibits matrix metalloproteinases-1 (MMP-1) and MMP-9 activation in human fibroblast-like synoviocytes. J Rheumatol 30:2330–2337
    [Google Scholar]
  40. Supattapone S., Bosque P., Muramoto T., Wille H., Aagaard C., Peretz D., Nguyen H. O., Heinrich C., Torchia M. other authors 1999; Prion protein of 106 residues creates an artifical transmission barrier for prion replication in transgenic mice. Cell 96:869–878 [CrossRef]
    [Google Scholar]
  41. Supattapone S., Muramoto T., Legname G., Mehlhorn I., Cohen F. E., DeArmond S. J., Prusiner S. B., Scott M. R. 2001; Identification of two prion protein regions that modify scrapie incubation time. J Virol 75:1408–1413 [CrossRef]
    [Google Scholar]
  42. Taniguchi S., Suzuki N., Masuda M., Hisanaga S., Iwatsubo T., Goedert M., Hasegawa M. 2005; Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J Biol Chem 280:7614–7623 [CrossRef]
    [Google Scholar]
  43. Taraboulos A., Scott M., Semenov A., Avrahami D., Laszlo L., Prusiner S. B., Avraham D. 1995; Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J Cell Biol 129:121–132 [CrossRef]
    [Google Scholar]
  44. Telling G. C., Haga T., Torchia M., Tremblay P., DeArmond S. J., Prusiner S. B. 1996; Interactions between wild-type and mutant prion proteins modulate neurodegeneration in transgenic mice. Genes Dev 10:1736–1750 [CrossRef]
    [Google Scholar]
  45. Touil F., Pratt S., Mutter R., Chen B. 2006; Screening a library of potential prion therapeutics against cellular prion proteins and insights into their mode of biological activities by surface plasmon resonance. J Pharm Biomed Anal 40:822–832 [CrossRef]
    [Google Scholar]
  46. Trevitt C. R., Collinge J. 2006; A systematic review of prion therapeutics in experimental models. Brain 129:2241–2265 [CrossRef]
    [Google Scholar]
  47. Williamson R. A., Peretz D., Pinilla C., Ball H., Bastidas R. B., Rozenshteyn R., Houghten R. A., Prusiner S. B., Burton D. R. 1998; Mapping the prion protein using recombinant antibodies. J Virol 72:9413–9418
    [Google Scholar]
  48. Zahn R., Liu A., Luhrs T., Riek R., von Schroetter C., Lopez Garcia F., Billeter M., Calzolai L., Wider G., Wuthrich K. 2000; NMR solution structure of the human prion protein. Proc Natl Acad Sci U S A 97:145–150 [CrossRef]
    [Google Scholar]
  49. Zou W. Q., Zheng J., Gray D. M., Gambetti P., Chen S. G. 2004; Antibody to DNA detects scrapie but not normal prion protein. Proc Natl Acad Sci U S A 101:1380–1385 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82601-0
Loading
/content/journal/jgv/10.1099/vir.0.82601-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error