1887

Abstract

In total, 55 isolates of (BCoV) were collected from cases of enteric and respiratory disease occurring between 1999 and 2006 in Japan. Phylogenetic analysis of the polymorphic region of the S glycoprotein gene of these isolates, together with those of other known strains, classified the BCoV strains and isolates into four clusters. Recent field isolates display distinctive genetic divergence from the prototype enteric BCoV strains – Mebus, Quebec, Kakegawa, F15 and LY138 – and have diverged in three different aspects over 8 years. These data suggested that the genetic divergence in the polymorphic region of the S glycoprotein has progressed considerably; thus, molecular analysis of this region should be useful in investigating the molecular epidemiology of BCoV. In addition, based on the differences in amino acids among the isolates, our study did not reveal the presence of certain genetic markers of pathogenicity and clinical symptoms in this polymorphic region.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82635-0
2007-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/4/1218.html?itemId=/content/journal/jgv/10.1099/vir.0.82635-0&mimeType=html&fmt=ahah

References

  1. Abraham S., Kienzle T. E., Lapps W., Brian D. A. 1990; Deduced sequence of the bovine coronavirus spike protein and identification of the internal proteolytic cleavage site. Virology 176:296–301 [CrossRef]
    [Google Scholar]
  2. Akashi H., Inaba Y., Miura Y., Tokuhisa S., Sato K., Satoda K. 1980; Properties of a coronavirus isolated from a cow with epizootic diarrhea. Vet Microbiol 5:265–276 [CrossRef]
    [Google Scholar]
  3. Ballesteros M. L., Sanchez C. M., Enjuanes L. 1997; Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism. Virology 227:378–388 [CrossRef]
    [Google Scholar]
  4. Brandao P. E., Gregori F., Richtzenhain L. J., Rosales C. A. R., Villarreal L. Y. B., Jerez J. A. 2006; Molecular analysis of Brazilian strains of bovine coronavirus (BCoV) reveals a deletion within the hypervariable region of the S1 subunit of the spike glycoprotein also found in human coronavirus OC43. Arch Virol 151:1735–1748 [CrossRef]
    [Google Scholar]
  5. Cavanagh D., Davis P. J., Pappin D. J. C., Binns M. M., Boursnell M. E. G., Brown T. D. K. 1986; Coronavirus IBV: partial amino terminal sequencing of spike polypeptide S2 identifies the sequence Arg-Arg-Phe-Arg-Arg at the cleavage site of the spike precursor propolypeptide of IBV strains Beaudette and M41. Virus Res 4:133–143 [CrossRef]
    [Google Scholar]
  6. Chouljenko V. N., Kousoulas K. G., Lin X., Storz S. 1998; Nucleotide and predicted amino acid sequence of all genes encoded by the 3′ genomic portion (9.5Kb) of respiratory bovine coronaviruses and comparisons among respiratory and enteric coronaviruses. Virus Genes 17:33–42 [CrossRef]
    [Google Scholar]
  7. Fazakerley J. K., Parker S. E., Bloom F., Buchmeier M. J. 1992; The V5A13.1 envelope glycoprotein deletion mutant of mouse hepatitis virus type-4 is neuroattenuated by its reduced rate of spread in the central nervous system. Virology 187:178–188 [CrossRef]
    [Google Scholar]
  8. Godet M., Grosclaude J., Delmas B., Laude H. 1994; Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein. J Virol 68:8008–8016
    [Google Scholar]
  9. Grebennikova T. V., Clouser D. F., Vorwald A. C., Musienko M. I., Mengeling W. L., Lager K. M., Wesley R. D., Biketov S. F., Zaberezhny A. D. other authors 2004; Genomic characterization of virulent, attenuated, and revertant passages of a North American porcine reproductive and respiratory syndrome virus strain. Virology 321:383–390 [CrossRef]
    [Google Scholar]
  10. Hasoksuz M., Lathrop S., Al-dubaib M. A., Lewis P., Saif L. J. 1999; Antigenic variation among bovine coronaviruses (BECV) and bovine respiratory coronaviruses (BRCV) detected using monoclonal antibodies. Arch Virol 144:2441–2447 [CrossRef]
    [Google Scholar]
  11. Hasoksuz M., Sreevatsan S., Cho K. O., Hoet A. E., Saif L. J. 2002; Molecular analysis of the S1 subunit of the spike glycoprotein of respiratory and enteric bovine coronavirus isolates. Virus Res 84:101–109 [CrossRef]
    [Google Scholar]
  12. Hingley S. T., Gombold J. L., Lavi E., Weiss S. R. 1994; MHV-A59 fusion mutants are attenuated and display altered hepatotropism. Virology 200:1–10 [CrossRef]
    [Google Scholar]
  13. Jeong J. H., Kim G. Y., Yoon S. S., Park S. J., Kim Y. J., Sung C. M., Shin S. S., Lee B. J., Kang M. I. other authors 2005; Molecular analysis of S gene of spike glycoprotein of winter dysentery bovine coronavirus circulated in Korea during 2002–2003. Virus Res 108:207–212 [CrossRef]
    [Google Scholar]
  14. Kourtesis A. B., Gelinas A. M., Dea S. 2001; Genomic and antigenic variations of the HE glycoprotein of bovine coronaviruses associated with neonatal calf diarrhea and winter dysentery. Arch Virol 146:1219–1230 [CrossRef]
    [Google Scholar]
  15. Kubo H., Yamada Y. K., Taguchi F. 1994; Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. J Virol 68:5403–5410
    [Google Scholar]
  16. Lai M. M. C., Cavanagh D. 1997; The molecular biology of coronaviruses. Adv Virus Res 48:1–100 [CrossRef]
    [Google Scholar]
  17. Lathrop S. L., Wittum T. E., Loerch S. C., Saif L. J. 2000; Antibody titers against bovine coronavirus and shedding of the virus via the respiratory tract in feedlot cattle. Am J Vet Res 61:1057–1061 [CrossRef]
    [Google Scholar]
  18. Liu L., Hagglund S., Hakhverdyan M., Alenius S., Larsen L. E., Belak S. 2006; Molecular epidemiology of bovine coronavirus on the basis of comparative analysis of the S gene. J Clin Microbiol 44:957–960 [CrossRef]
    [Google Scholar]
  19. Luo Z., Weiss S. 1998; Roles in cell-to-cell fusion of two conserved hydrophobic regions in the murine coronavirus spike protein. Virology 244:483–494 [CrossRef]
    [Google Scholar]
  20. Mebus C. A., Stair E. L., Rhodes M. B., Twiehaus M. J. 1973; Neonatal calf diarrhea; propagation, attenuation, and characteristics of coronavirus-like agent. Am J Vet Res 34:145–150
    [Google Scholar]
  21. Page R. D. M. 1996; TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
    [Google Scholar]
  22. Rekik M. R., Dea S. 1994; Comparative sequence analysis of a polymorphic region of the spike glycoprotein S1 subunit of enteric bovine coronavirus isolates. Arch Virol 135:319–331 [CrossRef]
    [Google Scholar]
  23. Saif L. J., Brock K. V., Redman D. R., Kohler E. M. 1991; Winter dysentery in dairy herds: electron microscopic and serological evidence for an association with coronavirus infection. Vet Rec 128:447–449 [CrossRef]
    [Google Scholar]
  24. Schultze B., Gross H. J., Brossmer R., Herrler G. 1991; The S protein of bovine coronavirus is a hemagglutinin recognizing 9- O -acetylated sialic acid as a receptor determinant. J Virol 65:6232–6237
    [Google Scholar]
  25. Spaan W. J. M., Brian D., Cavanagh D., de Groot R. J., Enjuanes L., Gorbalenya A. E., Holmes K. V., Masters P. S., Rottier P. J. M. other authors 2005; Family Coronaviridae . In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses pp 947–964 Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. London: Elsevier/Academic Press;
    [Google Scholar]
  26. Storz J., Purdy W., Lin X., Burrell M., Truax R. E., Briggs R. E., Frank G. H., Loan R. W. 2000; Isolation of respiratory bovine coronavirus, other cytocidal viruses, and Pasteurella spp. from cattle involved in two natural outbreaks of shipping fever. J Am Vet Med Assoc 216:1599–1604 [CrossRef]
    [Google Scholar]
  27. Takase-Yoden S., Kikuchi T., Siddell S. G., Taguchi F. 1991; Localization of major neutralizing epitopes on the S1 polypeptide of the murine coronavirus peplomer glycoprotein. Virus Res 18:99–107 [CrossRef]
    [Google Scholar]
  28. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal_w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  29. Tsunemitsu H., Saif L. J. 1995; Antigenic and biological comparisons of bovine coronaviruses derived from neonatal calf diarrhea and winter dysentery of adult cattle. Arch Virol 140:1303–1311 [CrossRef]
    [Google Scholar]
  30. Wu G., Yan S. 2005; Reasoning of spike glycoproteins being more vulnerable to mutations among 158 coronavirus proteins from different species. J Mol Model 11:8–16 [CrossRef]
    [Google Scholar]
  31. Yoo D., Deregt D. 2001; A single amino acid change within antigenic domain II of the spike protein of bovine coronavirus confers resistance to virus neutralization. Clin Diagn Lab Immunol 8:297–302
    [Google Scholar]
  32. Yoo D. W., Parker M. D., Babiuk L. A. 1991; The S2 subunit of the spike glycoprotein of bovine coronavirus mediates membrane fusion in insect cells. Virology 180:395–399 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82635-0
Loading
/content/journal/jgv/10.1099/vir.0.82635-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error