1887

Abstract

Recent advances in potexvirus research have produced new models describing virus replication, cell-to-cell movement, encapsidation, gene-mediated resistance and gene silencing. Interactions between distant RNA elements are a central theme in potexvirus replication. The 5′ non-translated region (NTR) regulates genomic and subgenomic RNA synthesis and encapsidation, as well as virus plasmodesmal transport. The 3′ NTR regulates both plus- and minus-strand RNA synthesis. How the triple gene-block proteins interact for virus movement is still elusive. As the potato virus X (PVX) TGBp1 protein gates plasmodesmata, regulates virus translation and is a suppressor of RNA silencing, further research is needed to determine how these properties contribute to propelling virus through the plasmodesmata. Specifically, TGBp1 suppressor activity is required for virus movement, but how the silencing machinery relates to plasmodesmata is not known. The TGBp2 and TGBp3 proteins are endoplasmic reticulum (ER)-associated proteins required for virus movement. TGBp2 associates with ER-derived vesicles that traffic along the actin network. Future research will determine whether the virus-induced vesicles are cytopathic structures regulating events along the ER or are vehicles carrying virus to the plasmodesmata for transfer into neighbouring cells. Efforts to assemble virions identified a single-tailed particle (STP) comprising RNA, coat protein (CP) and TGBp1. It has been proposed that TGBp1 aids in transport of virions or STP between cells and ensures translation of RNA in the receiving cells. PVX is also a tool for studying gene interactions and gene silencing in plants. The PVX CP is the elicitor for the gene. Recent reports of the PVX CP reveal how CP interacts with the gene product.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82667-0
2007-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/6/1643.html?itemId=/content/journal/jgv/10.1099/vir.0.82667-0&mimeType=html&fmt=ahah

References

  1. Adams M. J., Antoniw J. F., Bar-Joseph M., Brunt A. A., Candresse T., Foster G. D., Martelli G. P., Milne R. G., Zavriev S. K., Fauquet C. M. 2004; The new plant virus family Flexiviridae and assessment of molecular criteria for species demarcation. Arch Virol 149:1045–1060
    [Google Scholar]
  2. Adams M. J., Accotto G. P., Agranovsky A. A., Bar-Joseph M., Boscia D., Brunt A. A., Candresse T., Coutts R. H. A., Dolja V. V. other authors 2005; Genus Potexvirus. In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses . pp 1091–1095 Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. San Diego, CA: Elsevier Academic Press;
  3. Angell S. M., Baulcombe D. C. 1997; Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA. EMBO J 16:3675–3684 [CrossRef]
    [Google Scholar]
  4. Angell S. M., Baulcombe D. C. 1999; Technical advance: potato virus X amplicon-mediated silencing of nuclear genes. Plant J 20:357–362 [CrossRef]
    [Google Scholar]
  5. Angell S. M., Davies C., Baulcombe D. C. 1996; Cell-to-cell movement of potato virus X is associated with a change in the size-exclusion limit of plasmodesmata in trichome cells of Nicotiana clevelandii . Virology 216:197–201 [CrossRef]
    [Google Scholar]
  6. Annamalai P., Rao A. L. 2006; Packaging of brome mosaic virus subgenomic RNA is functionally coupled to replication-dependent transcription and translation of coat protein. J Virol 80:10096–10108 [CrossRef]
    [Google Scholar]
  7. Annamalai P., Hsu Y. H., Liu Y. P., Tsai C. H., Lin N. S. 2003; Structural and mutational analyses of cis -acting sequences in the 5′-untranslated region of satellite RNA of bamboo mosaic potexvirus. Virology 311:229–239 [CrossRef]
    [Google Scholar]
  8. Atabekov J. G., Rodionova N. P., Karpova O. V., Kozlovsky S. V., Poljakov V. Y. 2000; The movement protein-triggered in situ conversion of potato virus X virion RNA from a nontranslatable into a translatable form. Virology 271:259–263 [CrossRef]
    [Google Scholar]
  9. Atabekov J. G., Rodionova N. P., Karpova O. V., Kozlovsky S. V., Novikov V. K., Arkhipenko M. V. 2001; Translational activation of encapsidated potato virus X RNA by coat protein phosphorylation. Virology 286:466–474 [CrossRef]
    [Google Scholar]
  10. Baratova L. A., Fedorova N. V., Dobrov E. N., Lukashina E. V., Kharlanov A. N., Nasonov V. V., Serebryakova M. V., Kozlovsky S. V., Zayakina O. V., Rodionova N. P. 2004; N-terminal segment of potato virus X coat protein subunits is glycosylated and mediates formation of a bound water shell on the virion surface. Eur J Biochem 271:3136–3145 [CrossRef]
    [Google Scholar]
  11. Basnayake V. R., Sit T. L., Lommel S. A. 2006; The genomic RNA packaging scheme of red clover necrotic mosaic virus. Virology 345:532–539 [CrossRef]
    [Google Scholar]
  12. Batten J. S., Yoshinari S., Hemenway C. 2003; Potato virus X : a model system for virus replication, movement and gene expression. Mol Plant Pathol 4:125–131 [CrossRef]
    [Google Scholar]
  13. Baulcombe D. C. 1996; RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants. Plant Mol Biol 32:79–88 [CrossRef]
    [Google Scholar]
  14. Baulcombe D. C., Chapman S., Santa Cruz S. 1995; Jellyfish green fluorescent protein as a reporter for virus infections. Plant J 7:1045–1053 [CrossRef]
    [Google Scholar]
  15. Bayne E. H., Rakitina D. V., Morozov S. Y., Baulcombe D. C. 2005; Cell-to-cell movement of potato potexvirus X is dependent on suppression of RNA silencing. Plant J 44:471–482 [CrossRef]
    [Google Scholar]
  16. Bendahmane A., Kohn B. A., Dedi C., Baulcombe D. C. 1995; The coat protein of potato virus X is a strain-specific elicitor of Rx1 -mediated virus resistance in potato. Plant J 8:933–941 [CrossRef]
    [Google Scholar]
  17. Bendahmane A., Kanyuka K., Baulcombe D. C. 1999; The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11:781–792 [CrossRef]
    [Google Scholar]
  18. Bendahmane A., Querci M., Kanyuka K., Baulcombe D. C. 2000; Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato. Plant J 21:73–81 [CrossRef]
    [Google Scholar]
  19. Blanch E. W., Hecht L., Syme C. D., Volpetti V., Lomonossoff G. P., Nielsen K., Barron L. D. 2002; Molecular structures of viruses from Raman optical activity. J Gen Virol 83:2593–2600
    [Google Scholar]
  20. Blevins T., Rajeswaran R., Shivaprasad P. V., Beknazariants D., Si-Ammour A., Park H. S., Vazquez F., Robertson D., Meins F. Jr other authors 2006; Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res 34:6233–6246 [CrossRef]
    [Google Scholar]
  21. Chapman S., Hills G., Watts J., Baulcombe D. 1992a; Mutational analysis of the coat protein gene of potato virus X: effects on virion morphology and viral pathogenicity. Virology 191:223–230 [CrossRef]
    [Google Scholar]
  22. Chapman S., Kavanagh T., Baulcombe D. 1992b; Potato virus X as a vector for gene expression in plants. Plant J 2:549–557
    [Google Scholar]
  23. Chen I. H., Chou W. J., Lee P. Y., Hsu Y. H., Tsai C. H. 2005; The AAUAAA motif of bamboo mosaic virus RNA is involved in minus-strand RNA synthesis and plus-strand RNA polyadenylation. J Virol 79:14555–14561 [CrossRef]
    [Google Scholar]
  24. Cheng C. P., Tsai C. H. 1999; Structural and functional analysis of the 3′ untranslated region of bamboo mosaic potexvirus genomic RNA. J Mol Biol 288:555–565 [CrossRef]
    [Google Scholar]
  25. Cheng J. H., Peng C. W., Hsu Y. H., Tsai C. H. 2002; The synthesis of minus-strand RNA of bamboo mosaic potexvirus initiates from multiple sites within the poly(A) tail. J Virol 76:6114–6120 [CrossRef]
    [Google Scholar]
  26. Chiu W. W., Hsu Y. H., Tsai C. H. 2002; Specificity analysis of the conserved hexanucleotides for the replication of bamboo mosaic potexvirus RNA. Virus Res 83:159–167 [CrossRef]
    [Google Scholar]
  27. Choi Y. G., Rao A. L. 2000; Packaging of tobacco mosaic virus subgenomic RNAs by brome mosaic virus coat protein exhibits RNA controlled polymorphism. Virology 275:249–257 [CrossRef]
    [Google Scholar]
  28. Choi Y. G., Dreher T. W., Rao A. L. 2002; tRNA elements mediate the assembly of an icosahedral RNA virus. Proc Natl Acad Sci U S A 99:655–660 [CrossRef]
    [Google Scholar]
  29. Citovsky V., Zambryski P. 1991; How do plant virus nucleic acids move through intercellular connections?. Bioessays 13:373–379 [CrossRef]
    [Google Scholar]
  30. Citovsky V., Zambryski P. 1993; Transport of nucleic acids through membrane channels: snaking through small holes. Annu Rev Microbiol 47:167–197 [CrossRef]
    [Google Scholar]
  31. Citovsky V., Knorr D., Schuster G., Zambryski P. 1990; The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell 60:637–647 [CrossRef]
    [Google Scholar]
  32. Citovsky V., Knorr D., Zambryski P. 1991; Gene I, a potential cell-to-cell movement locus of cauliflower mosaic virus, encodes an RNA-binding protein. Proc Natl Acad Sci U S A 88:2476–2480 [CrossRef]
    [Google Scholar]
  33. Citovsky V., Wong M. L., Shaw A. L., Prasad B. V., Zambryski P. 1992; Visualization and characterization of tobacco mosaic virus movement protein binding to single-stranded nucleic acids. Plant Cell 4:397–411 [CrossRef]
    [Google Scholar]
  34. Cowan G. H., Lioliopoulou F., Ziegler A., Torrance L. 2002; Subcellular localisation, protein interactions, and RNA binding of potato mop-top virus triple gene block proteins. Virology 298:106–115 [CrossRef]
    [Google Scholar]
  35. Doronin S. V., Hemenway C. 1996; Synthesis of potato virus X RNAs by membrane-containing extracts. J Virol 70:4795–4799
    [Google Scholar]
  36. Dunoyer P., Himber C., Voinnet O. 2005; DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nat Genet 37:1356–1360 [CrossRef]
    [Google Scholar]
  37. English J. J., Mueller E., Baulcombe D. C. 1996; Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear genes. Plant Cell 8:179–188 [CrossRef]
    [Google Scholar]
  38. Fridborg I., Grainger J., Page A., Coleman M., Findlay K., Angell S. 2003; TIP, a novel host factor linking callose degradation with the cell-to-cell movement of potato virus X. Mol Plant Microbe Interact 16:132–140 [CrossRef]
    [Google Scholar]
  39. Hamilton A. J., Baulcombe D. C. 1999; A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952 [CrossRef]
    [Google Scholar]
  40. Hamilton A., Voinnet O., Chappell L., Baulcombe D. 2002; Two classes of short interfering RNA in RNA silencing. EMBO J 21:4671–4679 [CrossRef]
    [Google Scholar]
  41. Haupt S., Cowan G. H., Ziegler A., Roberts A. G., Oparka K. J., Torrance L. 2005; Two plant-viral movement proteins traffic in the endocytic recycling pathway. Plant Cell 17:164–181 [CrossRef]
    [Google Scholar]
  42. Howard A. R., Heppler M. L., Ju H.-J., Krishnamurthy K., Payton M. E., Verchot-Lubicz J. 2004; Potato virus X TGBp1 induces plasmodesmata gating and moves between cells in several host species whereas CP moves only in N. benthamiana leaves. Virology 328:185–197 [CrossRef]
    [Google Scholar]
  43. Hsu Y. H., Chen H. C., Cheng J., Annamalai P., Lin B. Y., Wu C. T., Yeh W. B., Lin N. S. 2006; Crucial role of the 5′ conserved structure of bamboo mosaic virus satellite RNA in downregulation of helper viral RNA replication. J Virol 80:2566–2574 [CrossRef]
    [Google Scholar]
  44. Hu B., Pillai-Nair N., Hemenway C. 2007; Long-distance RNA–RNA interactions between terminal elements and the same subset of internal elements on the potato virus X genome mediate minus- and plus-strand RNA synthesis. RNA 13:267–280
    [Google Scholar]
  45. Huang C. Y., Huang Y. L., Meng M., Hsu Y. H., Tsai C. H. 2001; Sequences at the 3′ untranslated region of bamboo mosaic potexvirus RNA interact with the viral RNA-dependent RNA polymerase. J Virol 75:2818–2824 [CrossRef]
    [Google Scholar]
  46. Huang Y. L., Han Y. T., Chang Y. T., Hsu Y. H., Meng M. 2004; Critical residues for GTP methylation and formation of the covalent m7GMP-enzyme intermediate in the capping enzyme domain of bamboo mosaic virus. J Virol 78:1271–1280 [CrossRef]
    [Google Scholar]
  47. Huisman M. J., Linthorst H. J., Bol J. F., Cornelissen J. C. 1988; The complete nucleotide sequence of potato virus X and its homologies at the amino acid level with various plus-stranded RNA viruses. J Gen Virol 69:1789–1798 [CrossRef]
    [Google Scholar]
  48. Ju H. J., Samuels T. D., Wang Y. S., Blancaflor E., Payton M., Mitra R., Krishnamurthy K., Nelson R. S., Verchot-Lubicz J. 2005; The potato virus X TGBp2 movement protein associates with endoplasmic reticulum-derived vesicles during virus infection. Plant Physiol 138:1877–1895 [CrossRef]
    [Google Scholar]
  49. Ju H. J., Brown J. E., Ye C. M., Verchot-Lubicz J. 2007; Mutations in the central domain of potato virus X TGBp2 eliminate granular vesicles and virus cell-to-cell trafficking. J Virol 81:1899–1911 [CrossRef]
    [Google Scholar]
  50. Kalinina N. O., Rakitina D. V., Solovyev A. G., Schiemann J., Morozov S. Y. 2002; RNA helicase activity of the plant virus movement proteins encoded by the first gene of the triple gene block. Virology 296:321–329 [CrossRef]
    [Google Scholar]
  51. Karpova O. V., Zayakina O. V., Arkhipenko M. V., Sheval E. V., Kiselyova O. I., Poljakov V. Yu., Yaminsky I. V., Rodionova N. P., Atabekov J. G. 2006; Potato virus X RNA-mediated assembly of single-tailed ternary ‘coat protein–RNA–movement protein’ complexes. J Gen Virol 87:2731–2740 [CrossRef]
    [Google Scholar]
  52. Kawakami S., Watanabe Y., Beachy R. N. 2004; Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proc Natl Acad Sci U S A 101:6291–6296 [CrossRef]
    [Google Scholar]
  53. Kendall A., Bian W., Junn J., McCullough I., Gore D., Stubbs G. 2007; Radial density distribution and symmetry of a Potexvirus , narcissus mosaic virus. Virology 357:158–164 [CrossRef]
    [Google Scholar]
  54. Kim K. H., Hemenway C. 1996; The 5′ nontranslated region of potato virus X RNA affects both genomic and subgenomic RNA synthesis. J Virol 70:5533–5540
    [Google Scholar]
  55. Kim K. H., Hemenway C. L. 1999; Long-distance RNA–RNA interactions and conserved sequence elements affect potato virus X plus-strand RNA accumulation. RNA 5:636–645 [CrossRef]
    [Google Scholar]
  56. Kim K. H., Kwon S. J., Hemenway C. 2002; Cellular protein binds to sequences near the 5′ terminus of potato virus X RNA that are important for virus replication. Virology 301:305–312 [CrossRef]
    [Google Scholar]
  57. Kiselyova O. I., Yaminsky I. V., Karpova O. V., Rodionova N. P., Kozlovsky S. V., Arkhipenko M. V., Atabekov J. G. 2003; AFM study of potato virus X disassembly induced by movement protein. J Mol Biol 332:321–325 [CrossRef]
    [Google Scholar]
  58. Krishnamurthy K., Heppler M., Mitra R., Blancaflor E., Payton M., Nelson R. S., Verchot-Lubicz J. 2003; The potato virus X TGBp3 protein associates with the ER network for virus cell-to-cell movement. Virology 309:135–151 [CrossRef]
    [Google Scholar]
  59. Kwon S. J., Kim K. H. 2006; The SL1 stem-loop structure at the 5′-end of potato virus X RNA is required for efficient binding to host proteins and for viral infectivity. Mol Cells 21:63–75
    [Google Scholar]
  60. Kwon S. J., Park M. R., Kim K. W., Plante C. A., Hemenway C. L., Kim K. H. 2005; cis -Acting sequences required for coat protein binding and in vitro assembly of Potato virus X . Virology 334:83–97 [CrossRef]
    [Google Scholar]
  61. Lakatos L., Szittya G., Silhavy D., Burgyan J. 2004; Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO J 23:876–884 [CrossRef]
    [Google Scholar]
  62. Lakatos L., Csorba T., Pantaleo V., Chapman E. J., Carrington J. C., Liu Y. P., Dolja V. V., Calvino L. F., Lopez-Moya J. J., Burgyan J. 2006; Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO J 25:2768–2780 [CrossRef]
    [Google Scholar]
  63. Lecours K., Tremblay M. H., Gagne M. E., Gagne S. M., Leclerc D. 2006; Purification and biochemical characterization of a monomeric form of papaya mosaic potexvirus coat protein. Protein Expr Purif 47:273–280 [CrossRef]
    [Google Scholar]
  64. Lee Y.-S., Lin B.-Y., Hsu Y.-H., Chang B.-Y., Lin N.-S. 1998; Subgenomic RNAs of bamboo mosaic potexvirus-V isolate are packaged into virions. J Gen Virol 79:1825–1832
    [Google Scholar]
  65. Lee Y. S., Hsu Y. H., Lin N. S. 2000; Generation of subgenomic RNA directed by a satellite RNA associated with bamboo mosaic potexvirus: analyses of potexvirus subgenomic RNA promoter. J Virol 74:10341–10348 [CrossRef]
    [Google Scholar]
  66. Leshchiner A. D., Solovyev A. G., Morozov S. Y., Kalinina N. O. 2006; A minimal region in the NTPase/helicase domain of the TGBp1 plant virus movement protein is responsible for ATPase activity and cooperative RNA binding. J Gen Virol 87:3087–3095 [CrossRef]
    [Google Scholar]
  67. Lin N. S., Hsu Y. H. 1994; A satellite RNA associated with bamboo mosaic potexvirus. Virology 202:707–714 [CrossRef]
    [Google Scholar]
  68. Lin J.-W., Chiu H.-N., Chen I.-H., Chen T.-C., Hsu Y.-H., Tsai C.-H. 2005; Structural and functional analysis of the cis -acting elements required for plus-strand RNA synthesis of Bamboo mosaic virus . J Virol 79:9046–9053 [CrossRef]
    [Google Scholar]
  69. Lin J. W., Ding M. P., Hsu Y. H., Tsai C. H. 2007; Chloroplast phosphoglycerate kinase, a gluconeogenetic enzyme, is required for efficient accumulation of bamboo mosaic virus. Nucleic Acids Res 35:424–432
    [Google Scholar]
  70. Liu J. S., Hsu Y. H., Huang T. Y., Lin N. S. 1997; Molecular evolution and phylogeny of satellite RNA associated with bamboo mosaic potexvirus. J Mol Evol 44:207–213 [CrossRef]
    [Google Scholar]
  71. Liu J. Z., Blancaflor E. B., Nelson R. S. 2005; The tobacco mosaic virus 126-kilodalton protein, a constituent of the virus replication complex, alone or within the complex aligns with and traffics along microfilaments. Plant Physiol 138:1853–1865 [CrossRef]
    [Google Scholar]
  72. Lough T. J., Shash K., Xoconostle-Cázares B., Hofstra K. R., Beck D. L., Balmori E., Forster R. L. S., Lucas W. J. 1998; Molecular dissection of the mechanism by which potexvirus triple gene block proteins mediate cell-to-cell transport of infectious RNA. Mol Plant Microbe Interact 11:801–814 [CrossRef]
    [Google Scholar]
  73. Lough T. J., Netzler N. E., Emerson S. J., Sutherland P., Carr F., Beck D. L., Lucas W. J., Forster R. L. 2000; Cell-to-cell movement of potexviruses: evidence for a ribonucleoprotein complex involving the coat protein and first triple gene block protein. Mol Plant Microbe Interact 13:962–974 [CrossRef]
    [Google Scholar]
  74. Lough T. J., Lee R. H., Emerson S. J., Forster R. L., Lucas W. J. 2006; Functional analysis of the 5′ untranslated region of potexvirus RNA reveals a role in viral replication and cell-to-cell movement. Virology 351:455–465 [CrossRef]
    [Google Scholar]
  75. Lucas W. J. 2006; Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology 344:169–184 [CrossRef]
    [Google Scholar]
  76. Mallory A. C., Parks G., Endres M. W., Baulcombe D., Bowman L. H., Pruss G. J., Vance V. B. 2002; The amplicon-plus system for high-level expression of transgenes in plants. Nat Biotechnol 20:622–625 [CrossRef]
    [Google Scholar]
  77. Merai Z., Kerenyi Z., Kertesz S., Magna M., Lakatos L., Silhavy D. 2006; Double-stranded RNA binding may be a general plant RNA viral strategy to suppress RNA silencing. J Virol 80:5747–5756 [CrossRef]
    [Google Scholar]
  78. Meshi T., Ohno T., Iba H., Okada Y. 1981; Nucleotide sequence of a cloned cDNA copy of TMV (cowpea strain) RNA, including the assembly origin, the coat protein cistron, and the 3′ non-coding region. Mol Gen Genet 184:20–25 [CrossRef]
    [Google Scholar]
  79. Miller E. D., Plante C. A., Kim K. H., Brown J. W., Hemenway C. 1998; Stem-loop structure in the 5′ region of potato virus X genome required for plus-strand RNA accumulation. J Mol Biol 284:591–608 [CrossRef]
    [Google Scholar]
  80. Miller E. D., Kim K. H., Hemenway C. 1999; Restoration of a stem-loop structure required for potato virus X RNA accumulation indicates selection for a mismatch and a GNRA tetraloop. Virology 260:342–353 [CrossRef]
    [Google Scholar]
  81. Mitra R., Krishnamurthy K., Blancaflor E., Payton M., Nelson R. S., Verchot-Lubicz J. 2003; The potato virus X TGBp2 protein association with the endoplasmic reticulum plays a role in but is not sufficient for viral cell-to-cell movement. Virology 312:35–48 [CrossRef]
    [Google Scholar]
  82. Moffett P., Farnham G., Peart J., Baulcombe D. C. 2002; Interaction between domains of a plant NBS-LRR protein in disease resistance-related cell death. EMBO J 21:4511–4519 [CrossRef]
    [Google Scholar]
  83. Morozov S. Y., Solovyev A. G. 2003; Triple gene block: modular design of a multifunctional machine for plant virus movement. J Gen Virol 84:1351–1366 [CrossRef]
    [Google Scholar]
  84. Morozov S. Y., Solovyev A. G., Kalinina N. O., Fedorkin O. N., Samuilova O. V., Schiemann J., Atabekov J. G. 1999; Evidence for two nonoverlapping functional domains in the potato virus X 25K movement protein. Virology 260:55–63 [CrossRef]
    [Google Scholar]
  85. Oparka K. J., Roberts A. G., Boevink P., Santa Cruz S., Roberts I., Pradel K. S., Imlau A., Kotlizky G., Sauer N., Epel B. 1999; Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell 97:743–754 [CrossRef]
    [Google Scholar]
  86. Parker L., Kendall A., Stubbs G. 2002; Surface features of potato virus X from fiber diffraction. Virology 300:291–295 [CrossRef]
    [Google Scholar]
  87. Pillai-Nair N., Kim K. H., Hemenway C. 2003; cis -Acting regulatory elements in the potato virus X 3′ non-translated region differentially affect minus-strand and plus-strand RNA accumulation. J Mol Biol 326:701–720 [CrossRef]
    [Google Scholar]
  88. Plante C. A., Kim K. H., Pillai-Nair N., Osman T. A., Buck K. W., Hemenway C. L. 2000; Soluble, template-dependent extracts from Nicotiana benthamiana plants infected with potato virus X transcribe both plus- and minus-strand RNA templates. Virology 275:444–451 [CrossRef]
    [Google Scholar]
  89. Qu F., Ye X., Hou G., Sato S., Clemente T. E., Morris T. J. 2005; RDR6 has a broad-spectrum but temperature-dependent antiviral defense role in Nicotiana benthamiana . J Virol 79:15209–15217 [CrossRef]
    [Google Scholar]
  90. Rairdan G. J., Moffett P. 2006; Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. Plant Cell 18:2082–2093 [CrossRef]
    [Google Scholar]
  91. Rathjen J. P., Moffett P. 2003; Early signal transduction events in specific plant disease resistance. Curr Opin Plant Biol 6:300–306 [CrossRef]
    [Google Scholar]
  92. Robards A. W., Lucas W. J. 1990; Plasmodesmata. Annu Rev Plant Physiol Plant Mol Biol 41:369–419 [CrossRef]
    [Google Scholar]
  93. Roberts I. M., Boevink P., Roberts A. G., Sauer N., Reichel C., Oparka K. J. 2001; Dynamic changes in the frequency and architecture of plasmodesmata during the sink-source transition in tobacco leaves. Protoplasma 218:31–44 [CrossRef]
    [Google Scholar]
  94. Rodionova N. P., Karpova O. V., Kozlovsky S. V., Zayakina O. V., Arkhipenko M. V., Atabekov J. G. 2003; Linear remodeling of helical virus by movement protein binding. J Mol Biol 333:565–572 [CrossRef]
    [Google Scholar]
  95. Rouleau M., Smith R. J., Bancroft J. B., Mackie G. A. 1994; Purification, properties, and subcellular localization of foxtail mosaic potexvirus 26-kDa protein. Virology 204:254–265 [CrossRef]
    [Google Scholar]
  96. Rouleau M., Smith R. J., Bancroft J. B., Mackie G. A. 1995; Subcellular immunolocalization of the coat protein of two potexviruses in infected Chenopodium quinoa . Virology 214:314–318 [CrossRef]
    [Google Scholar]
  97. Ruiz M. T., Voinnet O., Baulcombe D. C. 1998; Initiation and maintenance of virus-induced gene silencing. Plant Cell 10:937–946 [CrossRef]
    [Google Scholar]
  98. Santa Cruz S., Baulcombe D. C. 1993; Molecular analysis of potato virus X isolates in relation to the potato hypersensitivity gene Nx. Mol Plant Microbe Interact 6:707–714 [CrossRef]
    [Google Scholar]
  99. Santa Cruz S., Roberts A. G., Prior D. A., Chapman S., Oparka K. J. 1998; Cell-to-cell and phloem-mediated transport of potato virus X. The role of virions. Plant Cell 10:495–510 [CrossRef]
    [Google Scholar]
  100. Schepetilnikov M. V., Manske U., Solovyev A. G., Zamyatnin A. A., Schiemann J., Morozov S. Y. 2005; The hydrophobic segment of potato virus X TGBp3 is a major determinant of the protein intracellular trafficking. J Gen Virol 86:2379–2391 [CrossRef]
    [Google Scholar]
  101. Schwach F., Vaistij F. E., Jones L., Baulcombe D. C. 2005; An RNA-dependent RNA polymerase prevents meristem invasion by potato virus X and is required for the activity but not the production of a systemic silencing signal. Plant Physiol 138:1842–1852 [CrossRef]
    [Google Scholar]
  102. Senthil G., Liu H., Puram V. G., Clark A., Stromberg A., Goodin M. M. 2005; Specific and common changes in Nicotiana benthamiana gene expression in response to infection by enveloped viruses. J Gen Virol 86:2615–2625 [CrossRef]
    [Google Scholar]
  103. Shanmugam G., Polavarapu P. L., Kendall A., Stubbs G. 2005; Structures of plant viruses from vibrational circular dichroism. J Gen Virol 86:2371–2377 [CrossRef]
    [Google Scholar]
  104. Short M. N., Davies J. W. 1983; Narcissus mosaic virus: a potexvirus with an encapsidated subgenomic messenger RNA for coat protein. Biosci Rep 3:837–846 [CrossRef]
    [Google Scholar]
  105. Sit T. L., Leclerc D., AbouHaidar M. G. 1994; The minimal 5′ sequence for in vitro initiation of papaya mosaic potexvirus assembly. Virology 199:238–242 [CrossRef]
    [Google Scholar]
  106. Srinivasan K. G., Narendrakumar R., Wong S. M. 2002; Hibiscus virus S is a new subgroup II tobamovirus: evidence from its unique coat protein and movement protein sequences. Arch Virol 147:1585–1598 [CrossRef]
    [Google Scholar]
  107. Sriskanda V. S., Pruss G., Ge X., Vance V. B. 1996; An eight-nucleotide sequence in the potato virus X 3′ untranslated region is required for both host protein binding and viral multiplication. J Virol 70:5266–5271
    [Google Scholar]
  108. Torrance L., Cowan G. H., Gillespie T., Ziegler A., Lacomme C. 2006; Barley stripe mosaic virus-encoded proteins triple-gene block 2 and gamma b localize to chloroplasts in virus-infected monocot and dicot plants, revealing hitherto-unknown roles in virus replication. J Gen Virol 87:2403–2411 [CrossRef]
    [Google Scholar]
  109. Tozzini A. C., Ek B., Palva E. T., Hopp H. E. 1994; Potato virus X coat protein: a glycoprotein. Virology 202:651–658 [CrossRef]
    [Google Scholar]
  110. Tremblay M. H., Majeau N., Gagne M. E., Lecours K., Morin H., Duvignaud J. B., Bolduc M., Chouinard N., Pare C. Jr other authors 2006; Effect of mutations K97A and E128A on RNA binding and self assembly of papaya mosaic potexvirus coat protein. FEBS J 273:14–25 [CrossRef]
    [Google Scholar]
  111. Tsai M. S., Hsu Y. H., Lin N. S. 1999; Bamboo mosaic potexvirus satellite RNA (satBaMV RNA)-encoded P20 protein preferentially binds to satBaMV RNA. J Virol 73:3032–3039
    [Google Scholar]
  112. Verchot-Lubicz J. 2005; A new model for cell-to-cell movement of potexviruses. Mol Plant Microbe Interact 18:283–290 [CrossRef]
    [Google Scholar]
  113. Voinnet O., Vain P., Angell S., Baulcombe D. C. 1998; Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95:177–187 [CrossRef]
    [Google Scholar]
  114. Voinnet O., Lederer C., Baulcombe D. C. 2000; A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana . Cell 103:157–167 [CrossRef]
    [Google Scholar]
  115. White K. A., Bancroft J. B., Mackie G. A. 1992; Mutagenesis of a hexanucleotide sequence conserved in potexvirus RNAs. Virology 189:817–820 [CrossRef]
    [Google Scholar]
  116. Whitham S. A., Quan S., Chang H. S., Cooper B., Estes B., Zhu T., Wang X., Hou Y. M. 2003; Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J 33:271–283 [CrossRef]
    [Google Scholar]
  117. Xie Q., Guo H. S. 2006; Systemic antiviral silencing in plants. Virus Res 118:1–6 [CrossRef]
    [Google Scholar]
  118. Yang Y., Ding B., Baulcombe D. C., Verchot J. 2000; Cell-to-cell movement of the 25K protein of potato virus X is regulated by three other viral proteins. Mol Plant Microbe Interact 13:599–605 [CrossRef]
    [Google Scholar]
  119. Yeh W.-B., Hsu Y.-H., Chen H.-C., Lin N.-S. 2004; A conserved secondary structure in the hypervariable region at the 5′ end of Bamboo mosaic virus satellite RNA is functionally interchangeable. Virology 330:105–115 [CrossRef]
    [Google Scholar]
  120. Yu B., Chapman E. J., Yang Z., Carrington J. C., Chen X. 2006; Transgenically expressed viral RNA silencing suppressors interfere with microRNA methylation in Arabidopsis . FEBS Lett 580:3117–3120 [CrossRef]
    [Google Scholar]
  121. Zamyatnin A. A. Jr, Solovyev A. G., Sablina A. A., Agranovsky A. A., Katul L., Vetten H. J., Schiemann J., Hinkkanen A. E., Lehto K., Morozov S. Y. 2002; Dual-colour imaging of membrane protein targeting directed by poa semilatent virus movement protein TGBp3 in plant and mammalian cells. J Gen Virol 83:651–662
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82667-0
Loading
/content/journal/jgv/10.1099/vir.0.82667-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error