1887

Abstract

As pigs are susceptible to infection with both avian and human influenza A viruses, they have been proposed to be an intermediate host for the generation of pandemic virus through reassortment. Antigenic and genetic characterization was performed for five swine H9N2 influenza viruses isolated from diseased pigs from different farms. The haemagglutinin (HA) antigenicity of swine H9N2 viruses was different from that of chicken H9N2 viruses prevalent in northern China. Genetic analysis revealed that all five isolates had an RLSR motif at the cleavage site of HA, which was different from those of A/duck/Hong Kong/Y280/97 (Dk/HK/Y280/97)-like viruses established in chickens in China. Phylogenetic analyses indicated that the five swine H9N2 viruses formed novel HA and neuraminidase sublineages that were related closely to those of earlier chicken H9 viruses and were also consistent with the extent of the observed antigenic variation. The six internal genes of the isolates possessed H5N1-like sequences, indicating that they were reassortants of H9 and H5 viruses. The present results indicate that avian to porcine interspecies transmission of H9N2 viruses might have resulted in the generation of viruses with novel antigenic and genetic characteristics; therefore, surveillance of swine influenza should be given a high priority.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82783-0
2007-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/7/2035.html?itemId=/content/journal/jgv/10.1099/vir.0.82783-0&mimeType=html&fmt=ahah

References

  1. Brown I. H. 2000; The epidemiology and evolution of influenza viruses in pigs. Vet Microbiol 74:29–46 [CrossRef]
    [Google Scholar]
  2. Brown I. H. 2001; The pig as an intermediate host for influenza A viruses between birds and humans. Int Congr Ser 1219:173–178 [CrossRef]
    [Google Scholar]
  3. Brown I. H., Harris P. A., McCauley J. W., Alexander D. J. 1998; Multiple genetic reassortment of avian and human influenza A viruses in European pigs, resulting in the emergence of an H1N2 virus of novel genotype. J Gen Virol 79:2947–2955
    [Google Scholar]
  4. Butt K. M., Smith G. J., Chen H., Zhang L. J., Leung Y. H., Xu K. M., Lim W., Webster R. G., Yuen K. Y. other authors 2005; Human infection with an avian H9N2 influenza A virus in Hong Kong in 2003. J Clin Microbiol 43:5760–5767 [CrossRef]
    [Google Scholar]
  5. Castrucci M. R., Donatelli I., Sidoli L., Barigazzi G., Kawaoka Y., Webster R. G. 1993; Genetic reassortment between avian and human influenza A viruses in Italian pigs. Virology 193:503–506 [CrossRef]
    [Google Scholar]
  6. Chen B. L., Zhang A. J., Chen W. B. 1994; Isolation and identification of avian influenza virus. Chin J Vet Med 10:3–5 (in Chinese with English summary
    [Google Scholar]
  7. Choi Y. K., Ozaki H., Webby R. J., Webster R. G., Peiris J. S., Poon L., Butt C., Leung Y. H., Guan Y. 2004; Continuing evolution of H9N2 influenza viruses in southeastern China. J Virol 78:8609–8614 [CrossRef]
    [Google Scholar]
  8. Fouchier R. A., Munster V., Wallensten A., Bestebroer T. M., Herfst S., Smith D., Rimmelzwaan G. F., Olsen B., Osterhaus A. D. 2005; Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 79:2814–2822 [CrossRef]
    [Google Scholar]
  9. Guo Y. J., Li J. G., Cheng X. W. 1999; Discovery of men infected by avian influenza A (H9N2) virus. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 13:105–108 (in Chinese
    [Google Scholar]
  10. Guo Y. J., Krauss S., Senne D. A., Mo I. P., Lo K. S., Xiong X. P., Norwood M., Shortridge K. F., Webster R. G., Guan Y. 2000; Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia. Virology 267:279–288 [CrossRef]
    [Google Scholar]
  11. Ha Y., Stevens D. J., Skehel J. J., Wiley D. C. 2001; X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proc Natl Acad Sci U S A 98:11181–11186 [CrossRef]
    [Google Scholar]
  12. Hoffmann E., Stech J., Guan Y., Webster R. G., Perez D. R. 2001; Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146:2275–2289 [CrossRef]
    [Google Scholar]
  13. Ito T., Couceiro J. N., Kelm S., Baum L. G., Krauss S., Castrucci M. R., Donatelli I., Kida H., Paulson J. C. other authors 1998; Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 72:7367–7373
    [Google Scholar]
  14. Kaverin N. V., Rudneva I. A., Ilyushina N. A., Lipatov A. S., Krauss S., Webster R. G. 2004; Structural differences among hemagglutinins of influenza A virus subtypes are reflected in their antigenic architecture: analysis of H9 escape mutants. J Virol 78:240–249 [CrossRef]
    [Google Scholar]
  15. Kendal A. P., Pereira M. S., Skehel J. J. 1982 Concepts and Procedures for Laboratory-based Influenza Surveillance Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention;
    [Google Scholar]
  16. Li K. S., Xu K. M., Peiris J. S., Poon L. L., Yu K. Z., Yuen K. Y., Shortridge K. F., Webster R. G., Guan Y. 2003; Characterization of H9 subtype influenza viruses from the ducks of southern China: a candidate for the next influenza pandemic in humans?. J Virol 77:6988–6994 [CrossRef]
    [Google Scholar]
  17. Liu J., Okazaki K., Ozaki H., Sakoda Y., Wu Q., Chen F., Kida H. 2003; H9N2 influenza viruses prevalent in poultry in China are phylogenetically distinct from A/quail/Hong Kong/G1/97 presumed to be the donor of the internal protein genes of the H5N1 Hong Kong/97 virus. Avian Pathol 32:551–560 [CrossRef]
    [Google Scholar]
  18. Marozin S., Gregory V., Cameron K., Bennett M., Valette M., Aymard M., Foni E., Barigazzi G., Lin Y., Hay A. 2002; Antigenic and genetic diversity among swine influenza A H1N1 and H1N2 viruses in Europe. J Gen Virol 83:735–745
    [Google Scholar]
  19. Matrosovich M., Tuzikov A., Bovin N., Gambaryan A., Klimov A., Castrucci M. R., Donatelli I., Kawaoka Y. 2000; Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol 74:8502–8512 [CrossRef]
    [Google Scholar]
  20. Matrosovich M. N., Krauss S., Webster R. G. 2001; H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology 281:156–162 [CrossRef]
    [Google Scholar]
  21. Matrosovich M. N., Matrosovich T. Y., Gray T., Roberts N. A., Klenk H. D. 2004; Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc Natl Acad Sci U S A 101:4620–4624 [CrossRef]
    [Google Scholar]
  22. Nicholson K. G., Wood J. M., Zambon M. 2003; Influenza. Lancet 362:1733–1745 [CrossRef]
    [Google Scholar]
  23. Ninomiya A., Takada A., Okazaki K., Shortridge K. F., Kida H. 2002; Seroepidemiological evidence of avian H4, H5, and H9 influenza A virus transmission to pigs in southeastern China. Vet Microbiol 88:107–114 [CrossRef]
    [Google Scholar]
  24. Ohuchi M., Ohuchi R., Feldmann A., Klenk H. D. 1997; Regulation of receptor binding affinity of influenza virus hemagglutinin by its carbohydrate moiety. J Virol 71:8377–8384
    [Google Scholar]
  25. Olsen C. W., Karasin A. I., Carman S., Li Y., Bastien N., Ojkic D., Alves D., Charbonneau G., Henning B. M. other authors 2006; Triple reassortant H3N2 influenza A viruses. Canada: 2005 Emerg Infect Dis 12:1132–1135 [CrossRef]
    [Google Scholar]
  26. Page R. D. 1996; TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
    [Google Scholar]
  27. Peiris M., Yuen K. Y., Leung C. W., Chan K. H., Ip P. L., Lai R. W., Orr W. K., Shortridge K. F. 1999; Human infection with influenza H9N2. Lancet 354:916–917 [CrossRef]
    [Google Scholar]
  28. Peiris J. S., Guan Y., Markwell D., Ghose P., Webster R. G., Shortridge K. F. 2001; Cocirculation of avian H9N2 and contemporary ‘human’ H3N2 influenza A viruses in pigs in southeastern China: potential for genetic reassortment?. J Virol 75:9679–9686 [CrossRef]
    [Google Scholar]
  29. Reeth K. V., Brown I., Essen S., Pensaert M. 2004; Genetic relationships, serological cross-reaction and cross-protection between H1N2 and other influenza A virus subtypes endemic in European pigs. Virus Res 103:115–124 [CrossRef]
    [Google Scholar]
  30. Rogers G. N., Paulson J. C., Daniels R. S., Skehel J. J., Wilson I. A., Wiley D. C. 1983; Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature 304:76–78 [CrossRef]
    [Google Scholar]
  31. Scholtissek C., Burger H., Kistner O., Shortridge K. F. 1985; The nucleoprotein as a possible major factor in determining host specificity of influenza H3N2 viruses. Virology 147:287–294 [CrossRef]
    [Google Scholar]
  32. Shu L. L., Lin Y. P., Wright S. M., Shortridge K. F., Webster R. G. 1994; Evidence for interspecies transmission and reassortment of influenza A viruses in pigs in southern China. Virology 202:825–833 [CrossRef]
    [Google Scholar]
  33. Webster R. G., Bean W. J., Gorman O. T., Chambers T. M., Kawaoka Y. 1992; Evolution and ecology of influenza A viruses. Microbiol Rev 56:152–179
    [Google Scholar]
  34. Weis W., Brown J. H., Cusack S., Paulson J. C., Skehel J. J., Wiley D. C. 1988; Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 333:426–431 [CrossRef]
    [Google Scholar]
  35. Xu C., Fan W., Wei R., Zhao H. 2004; Isolation and identification of swine influenza recombinant A/Swine/Shandong/1/2003(H9N2) virus. Microbes Infect 6:919–925 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82783-0
Loading
/content/journal/jgv/10.1099/vir.0.82783-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error