1887

Abstract

The matrix (M1) protein of influenza A virus is a multifunctional protein that plays essential structural and functional roles in the virus life cycle. It drives virus budding and is the major protein component of the virion, where it forms an intermediate layer between the viral envelope and integral membrane proteins and the genomic ribonucleoproteins (RNPs). It also helps to control the intracellular trafficking of RNPs. These roles are mediated primarily via protein–protein interactions with viral and possibly cellular proteins. Here, the regions of M1 involved in binding the viral RNPs and in mediating homo-oligomerization are identified. , by using recombinant proteins, it was found that the middle domain of M1 was responsible for binding NP and that this interaction did not require RNA. Similarly, only M1 polypeptides containing the middle domain were able to bind to RNP–M1 complexes isolated from purified virus. When M1 self-association was examined, all three domains of the protein participated in homo-oligomerization although, again, the middle domain was dominant and self-associated efficiently in the absence of the N- and C-terminal domains. However, when the individual fragments of M1 were tagged with green fluorescent protein and expressed in virus-infected cells, microscopy of filamentous particles showed that only full-length M1 was incorporated into budding virions. It is concluded that the middle domain of M1 is primarily responsible for binding NP and self-association, but that additional interactions are required for efficient incorporation of M1 into virus particles.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82809-0
2007-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/8/2280.html?itemId=/content/journal/jgv/10.1099/vir.0.82809-0&mimeType=html&fmt=ahah

References

  1. Akarsu H., Burmeister W. P., Petosa C., Petit I., Muller C. W., Ruigrok R. W., Baudin F. 2003; Crystal structure of the M1 protein-binding domain of the influenza A virus nuclear export protein (NEP/NS2). EMBO J 22:4646–4655 [CrossRef]
    [Google Scholar]
  2. Ali A., Avalos R. T., Ponimaskin E., Nayak D. P. 2000; Influenza virus assembly: effect of influenza virus glycoproteins on the membrane association of M1 protein. J Virol 74:8709–8719 [CrossRef]
    [Google Scholar]
  3. Amorim M. J., Read E. K., Dalton R. M., Medcalf L., Digard P. 2006; Nuclear export of influenza A virus mRNAs requires ongoing RNA polymerase II activity. Traffic 8:1–11
    [Google Scholar]
  4. Arzt S., Baudin F., Barge A., Timmins P., Burmeister W. P., Ruigrok R. W. 2001; Combined results from solution studies on intact influenza virus M1 protein and from a new crystal form of its N-terminal domain show that M1 is an elongated monomer. Virology 279:439–446 [CrossRef]
    [Google Scholar]
  5. Arzt S., Petit I., Burmeister W. P., Ruigrok R. W., Baudin F. 2004; Structure of a knockout mutant of influenza virus M1 protein that has altered activities in membrane binding, oligomerisation and binding to NEP (NS2). Virus Res 99:115–119 [CrossRef]
    [Google Scholar]
  6. Baudin F., Petit I., Weissenhorn W., Ruigrok R. W. 2001; In vitro dissection of the membrane and RNP binding activities of influenza virus M1 protein. Virology 281:102–108 [CrossRef]
    [Google Scholar]
  7. Blok V., Cianci C., Tibbles K. W., Inglis S. C., Krystal M., Digard P. 1996; Inhibition of the influenza virus RNA-dependent RNA polymerase by antisera directed against the carboxy-terminal region of the PB2 subunit. J Gen Virol 77:1025–1033 [CrossRef]
    [Google Scholar]
  8. Bourmakina S. V., Garcia-Sastre A. 2003; Reverse genetics studies on the filamentous morphology of influenza A virus. J Gen Virol 84:517–527 [CrossRef]
    [Google Scholar]
  9. Bucher D., Popple S., Baer M., Mikhail A., Gong Y. F., Whitaker C., Paoletti E., Judd A. 1989; M protein (M1) of influenza virus: antigenic analysis and intracellular localization with monoclonal antibodies. J Virol 63:3622–3633
    [Google Scholar]
  10. Bui M., Whittaker G., Helenius A. 1996; Effect of M1 protein and low pH on nuclear transport of influenza virus ribonucleoproteins. J Virol 70:8391–8401
    [Google Scholar]
  11. Bui M., Wills E. G., Helenius A., Whittaker G. R. 2000; Role of the influenza virus M1 protein in nuclear export of viral ribonucleoproteins. J Virol 74:1781–1786 [CrossRef]
    [Google Scholar]
  12. Burleigh L. M., Calder L. J., Skehel J. J., Steinhauer D. A. 2005; Influenza A viruses with mutations in the m1 helix six domain display a wide variety of morphological phenotypes. J Virol 79:1262–1270 [CrossRef]
    [Google Scholar]
  13. Carrasco M., Amorim M. J., Digard P. 2004; Lipid raft-dependent targeting of the influenza A virus nucleoprotein to the apical plasma membrane. Traffic 5:979–992 [CrossRef]
    [Google Scholar]
  14. Craig D., Howell M. T., Gibbs C. L., Hunt T., Jackson R. J. 1992; Plasmid cDNA-directed protein synthesis in a coupled eukaryotic in vitro transcription-translation system. Nucleic Acids Res 20:4987–4995 [CrossRef]
    [Google Scholar]
  15. de Wit E., Spronken M. I., Bestebroer T. M., Rimmelzwaan G. F., Osterhaus A. D., Fouchier R. A. 2004; Efficient generation and growth of influenza virus A/PR/8/34 from eight cDNA fragments. Virus Res 103:155–161 [CrossRef]
    [Google Scholar]
  16. Digard P., Elton D., Bishop K., Medcalf E., Weeds A., Pope B. 1999; Modulation of nuclear localization of the influenza virus nucleoprotein through interaction with actin filaments. J Virol 73:2222–2231
    [Google Scholar]
  17. Elleman C. J., Barclay W. S. 2004; The M1 matrix protein controls the filamentous phenotype of influenza A virus. Virology 321:144–153 [CrossRef]
    [Google Scholar]
  18. Elster C., Fourest E., Baudin F., Larsen K., Cusack S., Ruigrok R. W. 1994; A small percentage of influenza virus M1 protein contains zinc but zinc does not influence in vitro M1–RNA interaction. J Gen Virol 75:37–42 [CrossRef]
    [Google Scholar]
  19. Elster C., Larsen K., Gagnon J., Ruigrok R. W., Baudin F. 1997; Influenza virus M1 protein binds to RNA through its nuclear localization signal. J Gen Virol 78:1589–1596
    [Google Scholar]
  20. Elton D., Medcalf E., Bishop K., Digard P. 1999a; Oligomerization of the influenza virus nucleoprotein: identification of positive and negative sequence elements. Virology 260:190–200 [CrossRef]
    [Google Scholar]
  21. Elton D., Medcalf L., Bishop K., Harrison D., Digard P. 1999b; Identification of amino acid residues of influenza virus nucleoprotein essential for RNA binding. J Virol 73:7357–7367
    [Google Scholar]
  22. Elton D., Simpson-Holley M., Archer K., Medcalf L., Hallam R., McCauley J., Digard P. 2001; Interaction of the influenza virus nucleoprotein with the cellular CRM1-mediated nuclear export pathway. J Virol 75:408–419 [CrossRef]
    [Google Scholar]
  23. Elton D., Amorim M. J., Medcalf L., Digard P. 2005; Genome gating; polarized intranuclear trafficking of influenza virus RNPs. Biol Lett 1:113–117 [CrossRef]
    [Google Scholar]
  24. Enami M., Enami K. 1996; Influenza virus hemagglutinin and neuraminidase glycoproteins stimulate the membrane association of the matrix protein. J Virol 70:6653–6657
    [Google Scholar]
  25. Fujii Y., Goto H., Watanabe T., Yoshida T., Kawaoka Y. 2003; Selective incorporation of influenza virus RNA segments into virions. Proc Natl Acad Sci U S A 100:2002–2007 [CrossRef]
    [Google Scholar]
  26. Garcia-Robles I., Akarsu H., Muller C. W., Ruigrok R. W., Baudin F. 2005; Interaction of influenza virus proteins with nucleosomes. Virology 332:329–336 [CrossRef]
    [Google Scholar]
  27. Gomez-Puertas P., Albo C., Perez-Pastrana E., Vivo A., Portela A. 2000; Influenza virus matrix protein is the major driving force in virus budding. J Virol 74:11538–11547 [CrossRef]
    [Google Scholar]
  28. Gregoriades A. 1980; Interaction of influenza M protein with viral lipid and phosphatidylcholine vesicles. J Virol 36:470–479
    [Google Scholar]
  29. Harris A., Forouhar F., Qiu S., Sha B., Luo M. 2001; The crystal structure of the influenza matrix protein M1 at neutral pH: M1–M1 protein interfaces can rotate in the oligomeric structures of M1. Virology 289:34–44 [CrossRef]
    [Google Scholar]
  30. Harris A., Cardone G., Winkler D. C., Heymann J. B., Brecher M., White J. M., Steven A. C. 2006; Influenza virus pleiomorphy characterized by cryoelectron tomography. Proc Natl Acad Sci U S A 103:19123–19127 [CrossRef]
    [Google Scholar]
  31. Iwatsuki-Horimoto K., Horimoto T., Noda T., Kiso M., Maeda J., Watanabe S., Muramoto Y., Fujii K., Kawaoka Y. 2006; The cytoplasmic tail of the influenza A virus M2 protein plays a role in viral assembly. J Virol 80:5233–5240 [CrossRef]
    [Google Scholar]
  32. Jin H., Leser G. P., Zhang J., Lamb R. A. 1997; Influenza virus hemagglutinin and neuraminidase cytoplasmic tails control particle shape. EMBO J 16:1236–1247 [CrossRef]
    [Google Scholar]
  33. Latham T., Galarza J. M. 2001; Formation of wild-type and chimeric influenza virus-like particles following simultaneous expression of only four structural proteins. J Virol 75:6154–6165 [CrossRef]
    [Google Scholar]
  34. Liu T., Ye Z. 2004; Introduction of a temperature-sensitive phenotype into influenza A/WSN/33 virus by altering the basic amino acid domain of influenza virus matrix protein. J Virol 78:9585–9591 [CrossRef]
    [Google Scholar]
  35. Martin K., Helenius A. 1991a; Nuclear transport of influenza virus ribonucleoproteins: the viral matrix protein (M1) promotes export and inhibits import. Cell 67:117–130 [CrossRef]
    [Google Scholar]
  36. Martin K., Helenius A. 1991b; Transport of incoming influenza virus nucleocapsids into the nucleus. J Virol 65:232–244
    [Google Scholar]
  37. McCown M. F., Pekosz A. 2006; Distinct domains of the influenza A virus M2 protein cytoplasmic tail mediate binding to the M1 protein and facilitate infectious virus production. J Virol 80:8178–8189 [CrossRef]
    [Google Scholar]
  38. Medcalf L., Poole E., Elton D., Digard P. 1999; Temperature-sensitive lesions in two influenza A viruses defective for replicative transcription disrupt RNA binding by the nucleoprotein. J Virol 73:7349–7356
    [Google Scholar]
  39. Melnikov S. Ya., Mikheeva A. V., Leneva I. A., Ghendon Y. Z. 1985; Interaction of M protein and RNP of fowl plague virus in vitro. Virus Res 3:353–365 [CrossRef]
    [Google Scholar]
  40. Nayak D. P., Hui E. K., Barman S. 2004; Assembly and budding of influenza virus. Virus Res 106:147–165 [CrossRef]
    [Google Scholar]
  41. Neumann G., Hughes M. T., Kawaoka Y. 2000; Influenza A virus NS2 protein mediates vRNP nuclear export through NES-independent interaction with hCRM1. EMBO J 19:6751–6758 [CrossRef]
    [Google Scholar]
  42. Noda T., Sagara H., Yen A., Takada A., Kida H., Cheng R. H., Kawaoka Y. 2006; Architecture of ribonucleoprotein complexes in influenza A virus particles. Nature 439:490–492 [CrossRef]
    [Google Scholar]
  43. O'Neill R. E., Talon J., Palese P. 1998; The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins. EMBO J 17:288–296 [CrossRef]
    [Google Scholar]
  44. Perez D. R., Donis R. O. 1998; The matrix 1 protein of influenza A virus inhibits the transcriptase activity of a model influenza reporter genome in vivo. Virology 249:52–61 [CrossRef]
    [Google Scholar]
  45. Portela A., Digard P. 2002; The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication. J Gen Virol 83:723–734
    [Google Scholar]
  46. Reinhardt J., Wolff T. 2000; The influenza A virus M1 protein interacts with the cellular receptor of activated C kinase (RACK) 1 and can be phosphorylated by protein kinase C. Vet Microbiol 74:87–100 [CrossRef]
    [Google Scholar]
  47. Rey O., Nayak D. P. 1992; Nuclear retention of M1 protein in a temperature-sensitive mutant of influenza (A/WSN/33) virus does not affect nuclear export of viral ribonucleoproteins. J Virol 66:5815–5824
    [Google Scholar]
  48. Ruigrok R. W., Barge A., Durrer P., Brunner J., Ma K., Whittaker G. R. 2000; Membrane interaction of influenza virus M1 protein. Virology 267:289–298 [CrossRef]
    [Google Scholar]
  49. Sha B., Luo M. 1997; Structure of a bifunctional membrane-RNA binding protein, influenza virus matrix protein M1. Nat Struct Biol 4:239–244 [CrossRef]
    [Google Scholar]
  50. Shishkov A. V., Goldanskii V. I., Baratova L. A., Fedorova N. V., Ksenofontov A. L., Zhirnov O. P., Galkin A. V. 1999; The in situ spatial arrangement of the influenza A virus matrix protein M1 assessed by tritium bombardment. Proc Natl Acad Sci U S A 96:7827–7830 [CrossRef]
    [Google Scholar]
  51. Simpson-Holley M., Ellis D., Fisher D., Elton D., McCauley J., Digard P. 2002; A functional link between the actin cytoskeleton and lipid rafts during budding of filamentous influenza virions. Virology 301:212–225 [CrossRef]
    [Google Scholar]
  52. Wakefield L., Brownlee G. G. 1989; RNA-binding properties of influenza A virus matrix protein M1. Nucleic Acids Res 17:8569–8580 [CrossRef]
    [Google Scholar]
  53. Watanabe K., Handa H., Mizumoto K., Nagata K. 1996; Mechanism for inhibition of influenza virus RNA polymerase activity by matrix protein. J Virol 70:241–247
    [Google Scholar]
  54. Watanabe K., Fuse T., Asano I., Tsukahara F., Maru Y., Nagata K., Kitazato K., Kobayashi N. 2006; Identification of Hsc70 as an influenza virus matrix protein (M1) binding factor involved in the virus life cycle. FEBS Lett 580:5785–5790 [CrossRef]
    [Google Scholar]
  55. Whittaker G., Kemler I., Helenius A. 1995; Hyperphosphorylation of mutant influenza virus matrix protein, M1, causes its retention in the nucleus. J Virol 69:439–445
    [Google Scholar]
  56. Yasuda J., Nakada S., Kato A., Toyoda T., Ishihama A. 1993; Molecular assembly of influenza virus: association of the NS2 protein with virion matrix. Virology 196:249–255 [CrossRef]
    [Google Scholar]
  57. Ye Z. P., Pal R., Fox J. W., Wagner R. R. 1987; Functional and antigenic domains of the matrix (M1) protein of influenza A virus. J Virol 61:239–246
    [Google Scholar]
  58. Ye Z. P., Baylor N. W., Wagner R. R. 1989; Transcription-inhibition and RNA-binding domains of influenza A virus matrix protein mapped with anti-idiotypic antibodies and synthetic peptides. J Virol 63:3586–3594
    [Google Scholar]
  59. Ye Z., Robinson D., Wagner R. R. 1995; Nucleus-targeting domain of the matrix protein (M1) of influenza virus. J Virol 69:1964–1970
    [Google Scholar]
  60. Ye Z., Liu T., Offringa D. P., McInnis J., Levandowski R. A. 1999; Association of influenza virus matrix protein with ribonucleoproteins. J Virol 73:7467–7473
    [Google Scholar]
  61. Young J. F., Desselberger U., Graves P., Palese P., Shatzman A., Rosenberg M. 1983; Cloning and expression of influenza virus genes. In The Origin of Pandemic Influenza Viruses pp 129–138 Edited by Laver W. G. Amsterdam: Elsevier Science;
    [Google Scholar]
  62. Zhang J., Leser G. P., Pekosz A., Lamb R. A. 2000; The cytoplasmic tails of the influenza virus spike glycoproteins are required for normal genome packaging. Virology 269:325–334 [CrossRef]
    [Google Scholar]
  63. Zhao H., Ekstrom M., Garoff H. 1998; The M1 and NP proteins of influenza A virus form homo- but not heterooligomeric complexes when coexpressed in BHK-21 cells. J Gen Virol 79:2435–2446
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82809-0
Loading
/content/journal/jgv/10.1099/vir.0.82809-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error