1887

Abstract

The Vaccinia virus BTB/kelch protein F3 has been characterized and its effects on virus replication and virus virulence have been determined. The loss of the gene had no effect on virus growth, plaque phenotype or cytopathic effect in cell culture under the conditions tested. However, the virulence of a virus lacking in an intradermal model was reduced compared with controls, and this was demonstrated by a significantly smaller lesion and alterations to the innate immune response to infection. The predicted molecular mass of the F3 protein is 56 kDa; however, immunoblotting of infected cell lysates using an antibody directed against recombinant F3 revealed two proteins of estimated sizes 37 and 25 kDa.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82815-0
2007-07-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/7/1917.html?itemId=/content/journal/jgv/10.1099/vir.0.82815-0&mimeType=html&fmt=ahah

References

  1. Adams J., Kelso R., Cooley L. 2000; The kelch repeat superfamily of proteins: propellers of cell function. Trends Cell Biol 10:17–24 [CrossRef]
    [Google Scholar]
  2. Alcami A., Smith G. L. 1992; A soluble receptor for interleukin-1 β encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell 71:153–167 [CrossRef]
    [Google Scholar]
  3. Angers S., Thorpe C. J., Biechele T. L., Goldenberg S. J., Zheng N., MacCoss M. J., Moon R. T. 2006; The KLHL12-Cullin-3 ubiquitin ligase negatively regulates the Wnt- β -catenin pathway by targeting Dishevelled for degradation. Nat Cell Biol 8:348–357 [CrossRef]
    [Google Scholar]
  4. Bardwell V. J., Treisman R. 1994; The POZ domain: a conserved protein-protein interaction motif. Genes Dev 8:1664–1677 [CrossRef]
    [Google Scholar]
  5. Beard P. M., Froggatt G. C., Smith G. L. 2006; Vaccinia virus kelch protein A55 is a 64 kDa intracellular factor that affects virus-induced cytopathic effect and the outcome of infection in a murine intradermal model. J Gen Virol 87:1521–1529 [CrossRef]
    [Google Scholar]
  6. Born W. K., Reardon C. L., O'Brien R. L. 2006; The function of γΔ T cells in innate immunity. Curr Opin Immunol 18:31–38 [CrossRef]
    [Google Scholar]
  7. Falkner F. G., Moss B. 1990; Transient dominant selection of recombinant vaccinia viruses. J Virol 64:3108–3111
    [Google Scholar]
  8. Goebel S. J., Johnson G. P., Perkus M. E., Davis S. W., Winslow J. P., Paoletti E. 1990; The complete DNA sequence of vaccinia virus. Virology 179:247–266. 517–563
    [Google Scholar]
  9. Haga I. R., Bowie A. G. 2005; Evasion of innate immunity by vaccinia virus. Parasitology 130, (Suppl):S11–S25 [CrossRef]
    [Google Scholar]
  10. Hamerman J. A., Ogasawara K., Lanier L. L. 2005; NK cells in innate immunity. Curr Opin Immunol 17:29–35 [CrossRef]
    [Google Scholar]
  11. Hayday A., Tigelaar R. 2003; Immunoregulation in the tissues by γΔ T cells. Nat Rev Immunol 3:233–242 [CrossRef]
    [Google Scholar]
  12. Hiller G., Weber K. 1985; Golgi-derived membranes that contain an acylated viral polypeptide are used for vaccinia virus envelopment. J Virol 55:651–659
    [Google Scholar]
  13. Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R. 1989; Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77:61–68 [CrossRef]
    [Google Scholar]
  14. Hughes S. T., Johnson L. H., de Carlos A., Smith G. L. 1991; Vaccinia virus encodes an active thymidylate that complements a cdc8 mutant of Saccharomyces cerevisiae . J Biol Chem 266:20103–20109
    [Google Scholar]
  15. Jacobs N., Chen R. A., Gubser C., Najarro P., Smith G. L. 2006; Intradermal immune response after infection with Vaccinia virus. J Gen Virol 87:1157–1161 [CrossRef]
    [Google Scholar]
  16. Kara P. D., Afonso C. L., Wallace D. B., Kutish G. F., Abolnik C., Lu Z., Vreede F. T., Taljaard L. C., Zsak A. other authors 2003; Comparative sequence analysis of the South African vaccine strain and two virulent field isolates of Lumpy skin disease virus. Arch Virol 148:1335–1356
    [Google Scholar]
  17. Kochneva G., Kolosova I., Maksyutova T., Ryabchikova E., Shchelkunov S. 2005; Effects of deletions of kelch-like genes on cowpox virus biological properties. Arch Virol 150:1857–1870 [CrossRef]
    [Google Scholar]
  18. Kotwal G. J., Moss B. 1988; Analysis of a large cluster of nonessential genes deleted from a vaccinia virus terminal transposition mutant. Virology 167:524–537
    [Google Scholar]
  19. Moss B. 2001; Poxviridae : the viruses and their replication. In Fields Virology , 4th edn. pp 2849–2883 Edited by Knipe D. M., Howley P. M. Philadelphia: Williams & Williams;
    [Google Scholar]
  20. Perkus M. E., Goebel S. J., Davis S. W., Johnson G. P., Norton E. K., Paoletti E. 1991; Deletion of 55 open reading frames from the termini of vaccinia virus. Virology 180:406–410 [CrossRef]
    [Google Scholar]
  21. Pires de Miranda M., Reading P. C., Tscharke D. C., Murphy B. J., Smith G. L. 2003; The vaccinia virus kelch-like protein C2L affects calcium-independent adhesion to the extracellular matrix and inflammation in a murine intradermal model. J Gen Virol 84:2459–2471 [CrossRef]
    [Google Scholar]
  22. Romani N., Ebner S., Tripp C. H., Flacher V., Koch F., Stoitzner P. 2006; Epidermal Langerhans cells–changing views on their function in vivo . Immunol Lett 106:119–125 [CrossRef]
    [Google Scholar]
  23. Salinas G. D., Blair L. A., Needleman L. A., Gonzales J. D., Chen Y., Li M., Singer J. D., Marshall J. 2006; Actinfilin is a CUL3 substrate adaptor, linking GluR6 kainate receptor subunits to the ubiquitin-proteasome pathway. J Biol Chem 281:40164–40173 [CrossRef]
    [Google Scholar]
  24. Sanderson C. M., Smith G. L. 1998; Vaccinia virus induces Ca2+-independent cell-matrix adhesion during the motile phase of infection. J Virol 72:9924–9933
    [Google Scholar]
  25. Sanderson C. M., Way M., Smith G. L. 1998; Virus-induced cell motility. J Virol 72:1235–1243
    [Google Scholar]
  26. Shchelkunov S., Totmenin A., Kolosova I. 2002; Species-specific differences in organization of orthopoxvirus kelch-like proteins. Virus Genes 24:157–162 [CrossRef]
    [Google Scholar]
  27. Tscharke D. C., Reading P. C., Smith G. L. 2002; Dermal infection with vaccinia virus reveals roles for virus proteins not seen using other inoculation routes. J Gen Virol 83:1977–1986
    [Google Scholar]
  28. Tulman E. R., Afonso C. L., Lu Z., Zsak L., Sur J. H., Sandybaev N. T., Kerembekova U. Z., Zaitsev V. L., Kutish G. F., Rock D. L. 2002; The genomes of sheeppox and goatpox viruses. J Virol 76:6054–6061 [CrossRef]
    [Google Scholar]
  29. Zhang D. D., Hannink M. 2003; Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol 23:8137–8151 [CrossRef]
    [Google Scholar]
  30. Zhang D. D., Lo S. C., Cross J. V., Templeton D. J., Hannink M. 2004; Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 24:10941–10953 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82815-0
Loading
/content/journal/jgv/10.1099/vir.0.82815-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error