1887

Abstract

Equine sarcoids, the most common skin tumours in horses, are induced by bovine papillomavirus (BPV). Their clinical appearance varies from small stable patches to aggressively growing masses. Differences in BPV load and mRNA expression and Ki67 and p53 immunostaining among four clinical types (fibroblastic, occult, nodular and verrucous sarcoids) were evaluated to test the hypothesis that the clinical behaviour of equine sarcoids correlates with BPV activity. Viral load and expression of the BPV E2, E5, E6 and E7 genes were determined using quantitative real-time PCR. The proliferative fraction (PF) of the tumours was determined by Ki67 immunostaining and expression of p53 was analysed by immunohistochemistry. Nodular sarcoids showed a significantly higher viral load than the other types. A significant overall difference among the four types was observed for E2, E5, E6 and E7 mRNA expression. Nodular sarcoids showed the highest expression level for each BPV gene examined, followed by verrucous, fibroblastic and occult tumours. Viral DNA and mRNA outcomes correlated with each other, indicating a similar transcription pattern in each type of sarcoid. The PF was significantly higher in the superficial layers of verrucous and fibroblastic sarcoids compared with occult and nodular types. No significant difference was observed for the PF in the deep layers and for p53 expression. These results clearly demonstrate the omnipresence and active transcription of BPV in equine sarcoids. However, the hypothesis that the clinical behaviour of an equine sarcoid can be explained on the basis of differences in BPV activity could not be demonstrated.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82876-0
2007-08-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/8/2155.html?itemId=/content/journal/jgv/10.1099/vir.0.82876-0&mimeType=html&fmt=ahah

References

  1. Amtmann E., Muller H., Sauer G. 1980; Equine connective tissue tumors contain unintegrated bovine papilloma virus DNA. J Virol 35:962–964
    [Google Scholar]
  2. Bogaert L., Martens A., De Baere C., Gasthuys F. 2005; Detection of bovine papillomavirus DNA on the normal skin and in the habitual surroundings of horses with and without equine sarcoids. Res Vet Sci 79:253–258 [CrossRef]
    [Google Scholar]
  3. Bogaert L., Van Poucke M., De Baere C., Peelman L., Gasthuys F., Martens A. 2006; Selection of a set of reliable reference genes for quantitative real-time PCR in normal equine skin and in equine sarcoids. BMC Biotechnol 6:24 [CrossRef]
    [Google Scholar]
  4. Campo M. S. 1988; Viral and cellular oncogenes in papillomavirus-associated cancers. Br J Cancer Suppl 9:80–84
    [Google Scholar]
  5. Carcopino X., Henry M., Benmoura D., Fallabregues A. S., Richet H., Boubli L., Tamalet C. 2006; Determination of HPV type 16 and 18 viral load in cervical smears of women referred to colposcopy. J Med Virol 78:1131–1140 [CrossRef]
    [Google Scholar]
  6. Carr E. A., Theon A. P., Madewell B. R., Griffey S. M., Hitchcock M. E. 2001a; Bovine papillomavirus DNA in neoplastic and nonneoplastic tissues obtained from horses with and without sarcoids in the western United States. Am J Vet Res 62:741–744 [CrossRef]
    [Google Scholar]
  7. Carr E. A., Theon A. P., Madewell B. R., Hitchcock M. E., Schlegel R., Schiller J. T. 2001b; Expression of a transforming gene (E5) of bovine papillomavirus in sarcoids obtained from horses. Am J Vet Res 62:1212–1217 [CrossRef]
    [Google Scholar]
  8. Chen E. Y., Howley P. M., Levinson A. D., Seeburg P. H. 1982; The primary structure and genetic organization of the bovine papillomavirus type 1 genome. Nature 299:529–534 [CrossRef]
    [Google Scholar]
  9. Dahlgren L., Erlandsson F., Lindquist D., Silfversward C., Hellstrom A., Dalianis T. 2006; Differences in human papillomavirus type may influence clinical outcome in early stage cervical cancer. Anticancer Res 26:829–832
    [Google Scholar]
  10. Ho C. M., Chien T. Y., Huang S. H., Lee B. H., Chang S. F. 2006; Integrated human papillomavirus types 52 and 58 are infrequently found in cervical cancer, and high viral loads predict risk of cervical cancer. Gynecol Oncol 102:54–60 [CrossRef]
    [Google Scholar]
  11. Johnston H. M., Thompson H., Pirie H. M. 1996; p53 immunohistochemistry in domestic animal tumours. Eur J Vet Pathol 2:135–140
    [Google Scholar]
  12. Kovacic M. B., Castle P. E., Herrero R., Schiffman M., Sherman M., Wacholder S., Rodriguez A. C., Hutchinson M. L., Bratti M. C. other authors 2006; Relationships of human papillomavirus type, qualitative viral load, and age with cytologic abnormality. Cancer Res 66:10112–10119 [CrossRef]
    [Google Scholar]
  13. Kraus I., Molden T., Erno L. E., Skomedal H., Karlsen F., Hagmar B. 2004; Human papillomavirus oncogenic expression in the dysplastic portio; an investigation of biopsies from 190 cervical cones. Br J Cancer 90:1407–1413 [CrossRef]
    [Google Scholar]
  14. Lai H. C., Peng M. Y., Nieh S., Yu C. P., Chang C. C., Lin Y. W., Sun C. A., Chu T. Y. 2006; Differential viral loads of human papillomavirus 16 and 58 infections in the spectrum of cervical carcinogenesis. Int J Gynecol Cancer 16:730–735 [CrossRef]
    [Google Scholar]
  15. Martens A., De Moor A., Demeulemeester J., Ducatelle R. 2000; Histopathological characteristics of five clinical types of equine sarcoid. Res Vet Sci 69:295–300 [CrossRef]
    [Google Scholar]
  16. Martens A., De Moor A., Demeulemeester J., Peelman L. 2001a; Polymerase chain reaction analysis of the surgical margins of equine sarcoids for bovine papilloma virus DNA. Vet Surg 30:460–467 [CrossRef]
    [Google Scholar]
  17. Martens A., De Moor A., Ducatelle R. 2001b; PCR detection of bovine papilloma virus DNA in superficial swabs and scrapings from equine sarcoids. Vet J 161:280–286 [CrossRef]
    [Google Scholar]
  18. Martens A., De Moor A., Vlaminck L., Pille F., Steenhaut M. 2001c; Evaluation of excision, cryosurgery and local BCG vaccination for the treatment of equine sarcoids. Vet Rec 149:665–669 [CrossRef]
    [Google Scholar]
  19. Nasir L., Reid S. W. J. 1999; Bovine papillomaviral gene expression in equine sarcoid tumours. Virus Res 61:171–175 [CrossRef]
    [Google Scholar]
  20. Nixon C., Chambers G., Ellsmore V., Campo M. S., Burr P., Argyle D. J., Reid S. W. J., Nasir L. 2005; Expression of cell cycle associated proteins cyclin A, CDK-2, p27kip1 and p53 in equine sarcoids. Cancer Lett 221:237–245 [CrossRef]
    [Google Scholar]
  21. Otten N., Vontscharner C., Lazary S., Antczak D. F., Gerber H. 1993; DNA of bovine papillomavirus type 1 and type 2 in equine sarcoids: PCR detection and direct sequencing. Arch Virol 132:121–131 [CrossRef]
    [Google Scholar]
  22. Pascoe R. R., Knottenbelt D. C. 1999; Neoplastic conditions. In Manual of Equine Dermatology pp 244–252 Edited by Pascoe R. R., Knottenbelt D. C. London: Saunders;
    [Google Scholar]
  23. Rozen S., Skaletsky H. J. 2000; Primer 3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols: Methods in Molecular Biology pp 365–386 Edited by Krawetz S. M. S. Totowa, NJ: Humana Press;
    [Google Scholar]
  24. Scheurer M. E., Tortolero-Luna G., Guillaud M., Follen M., Chen Z., Dillon L. M., Adler-Storthz K. 2005; Correlation of human papillomavirus type 16 and human papillomavirus type 18 E7 messenger RNA levels with degree of cervical dysplasia. Cancer Epidemiol Biomark Prev 14:1948–1952 [CrossRef]
    [Google Scholar]
  25. Teifke J. P., Weiss E. 1991; Detection of bovine papillomavirus DNA in equine sarcoids by polymerase chain-reaction (PCR). Berl Munch Tierarztl Wochenschr 104:185–187 (in German
    [Google Scholar]
  26. Teifke J. P., Hardt M., Weiss E. 1994; Detection of bovine papillomavirus DNA in formalin-fixed and paraffin-embedded equine sarcoids by polymerase chain reaction and non-radioactive in situ hybridization. Eur J Vet Pathol 1:5–10
    [Google Scholar]
  27. Wang-Johanning F., Lu D. W., Wang Y. Y., Johnson M. R., Johanning G. L. 2002; Quantitation of human papillomavirus 16 E6 and E7 DNA and RNA in residual material from ThinPrep Papanicolaou tests using real-time polymerase chain reaction analysis. Cancer 94:2199–2210 [CrossRef]
    [Google Scholar]
  28. Zuker M. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82876-0
Loading
/content/journal/jgv/10.1099/vir.0.82876-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error