1887

Abstract

The rotavirus (RV) non-structural protein 5, NSP5, is encoded by the smallest of the 11 genomic segments and localizes in ‘viroplasms’, cytoplasmic inclusion bodies in which viral RNA replication and packaging take place. NSP5 is essential for the replicative cycle of the virus because, in its absence, viroplasms are not formed and viral RNA replication and transcription do not occur. NSP5 is produced early in infection and undergoes a complex hyperphosphorylation process, leading to the formation of proteins differing in electrophoretic mobility. The role of hyperphosphorylation of NSP5 in the replicative cycle of rotavirus is unknown. Previous studies have suggested that the cellular kinase CK1 is responsible for the NSP5 hyperphosphorylation process. Here it is shown, by means of specific RNA interference, that , CK1 is the enzyme that initiates phosphorylation of NSP5. Lack of NSP5 hyperphosphorylation affected neither its interaction with the virus VP1 and NSP2 proteins normally found in viroplasms, nor the production of viral proteins. In contrast, the morphology of viroplasms was altered markedly in cells in which CK1 was depleted and a moderate decrease in the production of double-stranded RNA and infectious virus was observed. These data show that CK1 is the kinase that phosphorylates NSP5 in virus-infected cells and contribute to further understanding of the role of NSP5 in RV infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82922-0
2007-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/10/2800.html?itemId=/content/journal/jgv/10.1099/vir.0.82922-0&mimeType=html&fmt=ahah

References

  1. Afrikanova I., Miozzo M. C., Giambiagi S., Burrone O. 1996; Phosphorylation generates different forms of rotavirus NSP5. J Gen Virol 77:2059–2065 [CrossRef]
    [Google Scholar]
  2. Afrikanova I., Fabbretti E., Miozzo M. C., Burrone O. R. 1998; Rotavirus NSP5 phosphorylation is up-regulated by interaction with NSP2. J Gen Virol 79:2679–2686
    [Google Scholar]
  3. Arnoldi F., Campagna M., Eichwald C., Desselberger U., Burrone O. R. 2007; Interaction of rotavirus polymerase VP1 with nonstructural protein NSP5 is stronger than that with NSP2. J Virol 81:2128–2137 [CrossRef]
    [Google Scholar]
  4. Berois M., Sapin C., Erk I., Poncet D., Cohen J. 2003; Rotavirus nonstructural protein NSP5 interacts with major core protein VP2. J Virol 77:1757–1763 [CrossRef]
    [Google Scholar]
  5. Blackhall J., Fuentes A., Hansen K., Magnusson G. 1997; Serine protein kinase activity associated with rotavirus phosphoprotein NSP5. J Virol 71:138–144
    [Google Scholar]
  6. Burzio V., Antonelli M., Allende C. C., Allende J. E. 2002; Biochemical and cellular characteristics of the four splice variants of protein kinase CK1 α from zebrafish ( Danio rerio ). J Cell Biochem 86:805–814 [CrossRef]
    [Google Scholar]
  7. Cabral-Romero C., Padilla-Noriega L. 2006; Association of rotavirus viroplasms with microtubules through NSP2 and NSP5. Mem Inst Oswaldo Cruz 101:603–611 [CrossRef]
    [Google Scholar]
  8. Campagna M., Burrone O. R. 2006; Fusion of tags induces spurious phosphorylation of rotavirus NSP5. J Virol 80:8283–8284 [CrossRef]
    [Google Scholar]
  9. Campagna M., Eichwald C., Vascotto F., Burrone O. R. 2005; RNA interference of rotavirus segment 11 mRNA reveals the essential role of NSP5 in the virus replicative cycle. J Gen Virol 86:1481–1487 [CrossRef]
    [Google Scholar]
  10. Cartee T. L., Wertz G. W. 2001; Respiratory syncytial virus M2–1 protein requires phosphorylation for efficient function and binds viral RNA during infection. J Virol 75:12188–12197 [CrossRef]
    [Google Scholar]
  11. Cegielska A., Virshup D. M. 1993; Control of simian virus 40 DNA replication by the HeLa cell nuclear kinase casein kinase I. Mol Cell Biol 13:1202–1211
    [Google Scholar]
  12. Eichwald C., Vascotto F., Fabbretti E., Burrone O. R. 2002; Rotavirus NSP5: mapping phosphorylation sites and kinase activation and viroplasm localization domains. J Virol 76:3461–3470 [CrossRef]
    [Google Scholar]
  13. Eichwald C., Jacob G., Muszynski B., Allende J. E., Burrone O. R. 2004a; Uncoupling substrate and activation functions of rotavirus NSP5: phosphorylation of Ser-67 by casein kinase 1 is essential for hyperphosphorylation. Proc Natl Acad Sci U S A 101:16304–16309 [CrossRef]
    [Google Scholar]
  14. Eichwald C., Rodriguez J. F., Burrone O. R. 2004b; Characterisation of rotavirus NSP2/NSP5 interaction and dynamics of viroplasm formation. J Gen Virol 85:625–634 [CrossRef]
    [Google Scholar]
  15. Estes M. K., Graham D. Y., Gerba C. P., Smith E. M. 1979; Simian rotavirus SA11 replication in cell cultures. J Virol 31:810–815
    [Google Scholar]
  16. Fabbretti E., Afrikanova I., Vascotto F., Burrone O. R. 1999; Two non-structural rotavirus proteins, NSP2 and NSP5, form viroplasm-like structures in vivo . J Gen Virol 80:333–339
    [Google Scholar]
  17. Fuerst T. R., Niles E. G., Studier F. W., Moss B. 1986; Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A 83:8122–8126 [CrossRef]
    [Google Scholar]
  18. Gonzalez S. A., Burrone O. R. 1989; Porcine OSU rotavirus segment II sequence shows common features with the viral gene of human origin. Nucleic Acids Res 17:6402 [CrossRef]
    [Google Scholar]
  19. Gonzalez S. A., Burrone O. R. 1991; Rotavirus NS26 is modified by addition of single O -linked residues of N -acetylglucosamine. Virology 182:8–16 [CrossRef]
    [Google Scholar]
  20. Gonzalez S. A., Mattion N. M., Bellinzoni R., Burrone O. R. 1989; Structure of rearranged genome segment 11 in two different rotavirus strains generated by a similar mechanism. J Gen Virol 70:1329–1336 [CrossRef]
    [Google Scholar]
  21. Graham A., Kudesia G., Allen A. M., Desselberger U. 1987; Reassortment of human rotavirus possessing genome rearrangements with bovine rotavirus: evidence for host cell selection. J Gen Virol 68:115–122 [CrossRef]
    [Google Scholar]
  22. Hino S., Michiue T., Asashima M., Kikuchi A. 2003; Casein kinase Iϵ enhances the binding of Dvl-1 to Frat-1 and is essential for Wnt-3a-induced accumulation of β -catenin. J Biol Chem 278:14066–14073 [CrossRef]
    [Google Scholar]
  23. Knippschild U., Gocht A., Wolff S., Huber N., Lohler J., Stoter M. 2005; The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell Signal 17:675–689 [CrossRef]
    [Google Scholar]
  24. Li Z. N., Hongo S., Sugawara K., Sugahara K., Tsuchiya E., Matsuzaki Y., Nakamura K. 2001; The sites for fatty acylation, phosphorylation and intermolecular disulphide bond formation of influenza C virus CM2 protein. J Gen Virol 82:1085–1093
    [Google Scholar]
  25. Liu C., Li Y., Semenov M., Han C., Baeg G. H., Tan Y., Zhang Z., Lin X., He X. 2002; Control of β -catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108:837–847 [CrossRef]
    [Google Scholar]
  26. Lopez T., Rojas M., Ayala-Breton C., Lopez S., Arias C. F. 2005; Reduced expression of the rotavirus NSP5 gene has a pleiotropic effect on virus replication. J Gen Virol 86:1609–1617 [CrossRef]
    [Google Scholar]
  27. Marin O., Bustos V. H., Cesaro L., Meggio F., Pagano M. A., Antonelli M., Allende C. C., Pinna L. A., Allende J. E. 2003; A noncanonical sequence phosphorylated by casein kinase 1 in β -catenin may play a role in casein kinase 1 targeting of important signaling proteins. Proc Natl Acad Sci U S A 100:10193–10200 [CrossRef]
    [Google Scholar]
  28. Modrof J., Lymperopoulos K., Roy P. 2005; Phosphorylation of bluetongue virus nonstructural protein 2 is essential for formation of viral inclusion bodies. J Virol 79:10023–10031 [CrossRef]
    [Google Scholar]
  29. Poncet D., Lindenbaum P., L'Haridon R., Cohen J. 1997; In vivo and in vitro phosphorylation of rotavirus NSP5 correlates with its localization in viroplasms. J Virol 71:34–41
    [Google Scholar]
  30. Pulgar V., Marin O., Meggio F., Allende C. C., Allende J. E., Pinna L. A. 1999; Optimal sequences for non-phosphate-directed phosphorylation by protein kinase CK1 (casein kinase-1) – a re-evaluation. Eur J Biochem 260:520–526
    [Google Scholar]
  31. Quintavalle M., Sambucini S., Di Pietro C., De Francesco R., Neddermann P. 2006; The α isoform of protein kinase CKI is responsible for hepatitis C virus NS5A hyperphosphorylation. J Virol 80:11305–11312 [CrossRef]
    [Google Scholar]
  32. Sen A., Agresti D., Mackow E. R. 2006; Hyperphosphorylation of the rotavirus NSP5 protein is independent of serine 67 or NSP2, and the intrinsic insolubility of NSP5 is regulated by cellular phosphatases. J Virol 80:1807–1816 [CrossRef]
    [Google Scholar]
  33. Silvestri L. S., Taraporewala Z. F., Patton J. T. 2004; Rotavirus replication: plus-sense templates for double-stranded RNA synthesis are made in viroplasms. J Virol 78:7763–7774 [CrossRef]
    [Google Scholar]
  34. Silvestri L. S., Tortorici M. A., Vasquez-Del Carpio R., Patton J. T. 2005; Rotavirus glycoprotein NSP4 is a modulator of viral transcription in the infected cell. J Virol 79:15165–15174 [CrossRef]
    [Google Scholar]
  35. Takano A., Isojima Y., Nagai K. 2004; Identification of mPer1 phosphorylation sites responsible for the nuclear entry. J Biol Chem 279:32578–32585 [CrossRef]
    [Google Scholar]
  36. Vascotto F., Campagna M., Visintin M., Cattaneo A., Burrone O. R. 2004; Effects of intrabodies specific for rotavirus NSP5 during the virus replicative cycle. J Gen Virol 85:3285–3290 [CrossRef]
    [Google Scholar]
  37. Welch S. K., Crawford S. E., Estes M. K. 1989; Rotavirus SA11 genome segment 11 protein is a nonstructural phosphoprotein. J Virol 63:3974–3982
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82922-0
Loading
/content/journal/jgv/10.1099/vir.0.82922-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error