1887

Abstract

Many viruses have evolved mechanisms to evade host immunity by subverting the function of dendritic cells (DCs). This study determined whether murine gammaherpesvirus-68 (HV-68) could infect immature or mature bone-marrow-derived DCs and what effect infection had on DC maturation. It was found that HV-68 productively infected immature DCs, as evidenced by increased viral titres over time. If DCs were induced to mature by exposure to LPS and then infected with HV-68, only a small percentage of cells was productively infected. However, limiting-dilution assays to measure viral reactivation demonstrated that the mature DCs were latently infected with HV-68. Electron microscopy revealed the presence of capsids in the nucleus of immature DCs but not in mature DCs. Interestingly, infection of immature DCs by HV-68 did not result in upregulation of the co-stimulatory molecules CD80 and CD86 or MHC class I and II, or induce cell migration, suggesting that the virus infection did not induce DC maturation. Furthermore, HV-68 infection of immature DCs did not result in elevated interleukin-12, an important cytokine in the induction of T-cell responses. Finally, lipopolysaccharide and poly(I : C) stimulation of HV-68-infected immature DCs did not induce increases in the expression of co-stimulatory molecules and MHC class I or II compared with mock-treated cells, suggesting that HV-68 infection blocked maturation. Taken together, these data demonstrate that HV-68 infection of DCs differs depending on the maturation state of the DC. Moreover, the block in DC maturation suggests a possible immunoevasion strategy by HV-68.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82931-0
2007-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/7/1896.html?itemId=/content/journal/jgv/10.1099/vir.0.82931-0&mimeType=html&fmt=ahah

References

  1. Andrews D. M., Andoniou C. E., Granucci F., Ricciardi-Castagnoli P., Degli-Esposti M. A. 2001; Infection of dendritic cells by murine cytomegalovirus induces functional paralysis. Nat Immunol 2:1077–1084 [CrossRef]
    [Google Scholar]
  2. Ardavin C. 2003; Origin, precursors and differentiation of mouse dendritic cells. Nat Rev Immunol 3:582–590 [CrossRef]
    [Google Scholar]
  3. Banchereau J., Steinman R. M. 1998; Dendritic cells and the control of immunity. Nature 392:245–252 [CrossRef]
    [Google Scholar]
  4. Banchereau J., Briere F., Caux C., Davoust J., Lebecque S., Liu Y. J., Pulendran B., Palucka K. 2000; Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811 [CrossRef]
    [Google Scholar]
  5. Cardin R. D., Brooks J. W., Sarawar S. R., Doherty P. C. 1996; Progressive loss of CD8+ T cell-mediated control of a gamma-herpesvirus in the absence of CD4+ T cells. J Exp Med 184:863–871 [CrossRef]
    [Google Scholar]
  6. Caux C., Ait-Yahia S., Chemin K., de Bouteiller O., Dieu-Nosjean M. C., Homey B., Massacrier C., Vanbervliet B., Zlotnik A., Vicari A. 2000; Dendritic cell biology and regulation of dendritic cell trafficking by chemokines. Springer Semin Immunopathol 22:345–369 [CrossRef]
    [Google Scholar]
  7. Chen H., Lee J. M., Zong Y., Borowitz M., Ng M. H., Ambinder R. F., Hayward S. D. 2001; Linkage between STAT regulation and Epstein–Barr virus gene expression in tumors. J Virol 75:2929–2937 [CrossRef]
    [Google Scholar]
  8. Engelmayer J., Larsson M., Subklewe M., Chahroudi A., Cox W. I., Steinman R. M., Bhardwaj N. 1999; Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion. J Immunol 163:6762–6768
    [Google Scholar]
  9. Flano E., Husain S. M., Sample J. T., Woodland D. L., Blackman M. A. 2000; Latent murine gamma-herpesvirus infection is established in activated B cells, dendritic cells, and macrophages. J Immunol 165:1074–1081 [CrossRef]
    [Google Scholar]
  10. Flano E., Kim I. J., Moore J., Woodland D. L., Blackman M. A. 2003; Differential gamma-herpesvirus distribution in distinct anatomical locations and cell subsets during persistent infection in mice. J Immunol 170:3828–3834 [CrossRef]
    [Google Scholar]
  11. Flano E., Kayhan B., Woodland D. L., Blackman M. A. 2005; Infection of dendritic cells by a gamma2-herpesvirus induces functional modulation. J Immunol 175:3225–3234 [CrossRef]
    [Google Scholar]
  12. Forster R., Schubel A., Breitfeld D., Kremmer E., Renner-Muller I., Wolf E., Lipp M. 1999; CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99:23–33 [CrossRef]
    [Google Scholar]
  13. Fugier-Vivier I., Servet-Delprat C., Rivailler P., Rissoan M. C., Liu Y. J., Rabourdin-Combe C. 1997; Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells. J Exp Med 186:813–823 [CrossRef]
    [Google Scholar]
  14. Guerreiro-Cacais A. O., Li L., Donati D., Bejarano M. T., Morgan A., Masucci M. G., Hutt-Fletcher L., Levitsky V. 2004; Capacity of Epstein–Barr virus to infect monocytes and inhibit their development into dendritic cells is affected by the cell type supporting virus replication. J Gen Virol 85:2767–2778 [CrossRef]
    [Google Scholar]
  15. Hahm B., Trifilo M. J., Zuniga E. I., Oldstone M. B. 2005; Viruses evade the immune system through type I interferon-mediated STAT2-dependent, but STAT1-independent, signaling. Immunity 22:247–257 [CrossRef]
    [Google Scholar]
  16. Hart D. N. J. 1997; Denritic cells: unique leukocyte populations which control the primary immune response. Blood 90:3245–3287
    [Google Scholar]
  17. Hobbs M. V., Weigle W. O., Noonan D. J., Torbett B. E., McEvilly R. J., Koch R. J., Cardenas G. J., Ernst D. N. 1993; Patterns of cytokine gene expression by CD4+ T cells from young and old mice. J Immunol 150:3602–3614
    [Google Scholar]
  18. Kelsall B. L., Biron C. A., Sharma O., Kaye P. M. 2002; Dendritic cells at the host–pathogen interface. Nat Immunol 3:699–702 [CrossRef]
    [Google Scholar]
  19. Lamont A. G., Adorini L. 1996; IL-12: a key cytokine in immune regulation. Immunol Today 17:214–217 [CrossRef]
    [Google Scholar]
  20. Li L., Liu D., Hutt-Fletcher L., Morgan A., Masucci M. G., Levitsky V. 2002; Epstein–Barr virus inhibits the development of dendritic cells by promoting apoptosis of their monocyte precursors in the presence of granulocyte macrophage-colony-stimulating factor and interleukin-4. Blood 99:3725–3734 [CrossRef]
    [Google Scholar]
  21. Lipscomb M. F., Masten B. J. 2002; Dendritic cells: immune regulators in health and disease. Physiol Rev 82:97–130
    [Google Scholar]
  22. Lund T. C., Garcia R., Medveczky M. M., Jove R., Medveczky P. G. 1997; Activation of STAT transcription factors by herpesvirus saimiri Tip-484 requires p56lck. J Virol 71:6677–6682
    [Google Scholar]
  23. Lutz M. B., Kukutsch N., Ogilvie A. L., Rossner S., Koch F., Romani N., Schuler G. 1999; An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 223:77–92 [CrossRef]
    [Google Scholar]
  24. Maldonado-Lopez R., Moser M. 2001; Dendritic cell subsets and the regulation of Th1/Th2 responses. Semin Immunol 13:275–282 [CrossRef]
    [Google Scholar]
  25. Maldonado-Lopez R., De Smedt T., Michel P., Godfroid J., Pajak B., Heirman C., Thielemans K., Leo O., Urbain J., Moser M. 1999; CD8 α + and CD8 α subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med 189:587–592 [CrossRef]
    [Google Scholar]
  26. Marques S., Efstathiou S., Smith K. G., Haury M., Simas J. P. 2003; Selective gene expression of latent murine gammaherpesvirus 68 in B lymphocytes. J Virol 77:7308–7318 [CrossRef]
    [Google Scholar]
  27. Martin-Fontecha A., Sebastiani S., Hopken U. E., Uguccioni M., Lipp M., Lanzavecchia A., Sallusto F. 2003; Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med 198:615–621 [CrossRef]
    [Google Scholar]
  28. Migone T. S., Lin J. X., Cereseto A., Mulloy J. C., O'Shea J. J., Franchini G., Leonard W. J. 1995; Constitutively activated Jak-STAT pathway in T cells transformed with HTLV-I. Science 269:79–81 [CrossRef]
    [Google Scholar]
  29. Miller D. M., Rahill B. M., Boss J. M., Lairmore M. D., Durbin J. E., Waldman J. W., Sedmak D. D. 1998; Human cytomegalovirus inhibits major histocompatibility complex class II expression by disruption of the Jak/Stat pathway. J Exp Med 187:675–683 [CrossRef]
    [Google Scholar]
  30. Moll H. 2003; Dendritic cells and host resistance to infection. Cell Microbiol 5:493–500 [CrossRef]
    [Google Scholar]
  31. Moutaftsi M., Mehl A. M., Borysiewicz L. K., Tabi Z. 2002; Human cytomegalovirus inhibits maturation and impairs function of monocyte-derived dendritic cells. Blood 99:2913–2921 [CrossRef]
    [Google Scholar]
  32. Pollara G., Speidel K., Samady L., Rajpopat M., McGrath Y., Ledermann J., Coffin R. S., Katz D. R., Chain B. 2003; Herpes simplex virus infection of dendritic cells: balance among activation, inhibition, and immunity. J Infect Dis 187:165–178 [CrossRef]
    [Google Scholar]
  33. Poltorak A., He X., Smirnova I., Liu M. Y., Van Huffel C., Du X., Birdwell D., Alejos E., Silva M. other authors 1998; Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088 [CrossRef]
    [Google Scholar]
  34. Rappocciolo G., Jenkins F. J., Hensler H. R., Piazza P., Jais M., Borowski L., Watkins S. C., Rinaldo C. R., Jr. 2006; DC-SIGN is a receptor for human herpesvirus 8 on dendritic cells and macrophages. J Immunol 176:1741–1749 [CrossRef]
    [Google Scholar]
  35. Rochford R., Lutzke M. L., Alfinito R. S., Clavo A., Cardin R. D. 2001; Kinetics of murine gammaherpesvirus 68 gene expression following infection of murine cells in culture and in mice. J Virol 75:4955–4963 [CrossRef]
    [Google Scholar]
  36. Salio M., Cella M., Suter M., Lanzavecchia A. 1999; Inhibition of dendritic cell maturation by herpes simplex virus. Eur J Immunol 29:3245–3253 [CrossRef]
    [Google Scholar]
  37. Sallusto F., Schaerli P., Loetscher P., Schaniel C., Lenig D., Mackay C. R., Qin S., Lanzavecchia A. 1998; Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol 28:2760–2769 [CrossRef]
    [Google Scholar]
  38. Sevilla N., McGavern D. B., Teng C., Kunz S., Oldstone M. B. 2004; Viral targeting of hematopoietic progenitors and inhibition of DC maturation as a dual strategy for immune subversion. J Clin Invest 113:737–745 [CrossRef]
    [Google Scholar]
  39. Smith A. P., Paolucci C., Di Lullo G., Burastero S. E., Santoro F., Lusso P. 2005; Viral replication-independent blockade of dendritic cell maturation and interleukin-12 production by human herpesvirus 6. J Virol 79:2807–2813 [CrossRef]
    [Google Scholar]
  40. Stebbing J., Gazzard B., Portsmouth S., Gotch F., Kim L., Bower M., Mandalia S., Binder R., Srivastava P., Patterson S. 2003; Disease-associated dendritic cells respond to disease-specific antigens through the common heat shock protein receptor. Blood 102:1806–1814 [CrossRef]
    [Google Scholar]
  41. Takeda K., Akira S. 2004; TLR signaling pathways. Semin Immunol 16:3–9 [CrossRef]
    [Google Scholar]
  42. Tortorella D., Gewurz B. E., Furman M. H., Schust D. J., Ploegh H. L. 2000; Viral subversion of the immune system. Annu Rev Immunol 18:861–926 [CrossRef]
    [Google Scholar]
  43. Trinchieri G. 2003; Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133–146 [CrossRef]
    [Google Scholar]
  44. Trinchieri G., Pflanz S., Kastelein R. A. 2003; The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity 19:641–644 [CrossRef]
    [Google Scholar]
  45. Usherwood E. J., Stewart J. P., Nash A. A. 1996; Characterization of tumor cell lines derived from murine gammaherpesvirus-68-infected mice. J Virol 70:6516–6518
    [Google Scholar]
  46. van Dyk L. F., Virgin H. W. IV, Speck S. H. 2000; The murine gammaherpesvirus 68 v-cyclin is a critical regulator of reactivation from latency. J Virol 74:7451–7461 [CrossRef]
    [Google Scholar]
  47. Vecchi A., Massimiliano L., Ramponi S., Luini W., Bernasconi S., Bonecchi R., Allavena P., Parmentier M., Mantovani A., Sozzani S. 1999; Differential responsiveness to constitutive vs. inducible chemokines of immature and mature mouse dendritic cells. J Leukoc Biol 66:489–494
    [Google Scholar]
  48. Weber-Nordt R. M., Egen C., Wehinger J., Ludwig W., Gouilleux-Gruart V., Mertelsmann R., Finke J. 1996; Constitutive activation of STAT proteins in primary lymphoid and myeloid leukemia cells and in Epstein–Barr virus (EBV)-related lymphoma cell lines. Blood 88:809–816
    [Google Scholar]
  49. Weck K. E., Barkon M. L., Yoo L. I., Speck S. H., Virgin H. I. 1996; Mature B cells are required for acute splenic infection, but not for establishment of latency, by murine gammaherpesvirus 68. J Virol 70:6775–6780
    [Google Scholar]
  50. Wen H., Hogaboam C. M., Gauldie J., Kunkel S. L. 2006; Severe sepsis exacerbates cell-mediated immunity in the lung due to an altered dendritic cell cytokine profile. Am J Pathol 168:1940–1950 [CrossRef]
    [Google Scholar]
  51. Wu T. T., Tong L., Rickabaugh T., Speck S., Sun R. 2001; Function of Rta is essential for lytic replication of murine gammaherpesvirus 68. J Virol 75:9262–9273 [CrossRef]
    [Google Scholar]
  52. Yokota S., Yokosawa N., Okabayashi T., Suzutani T., Miura S., Jimbow K., Fujii N. 2004; Induction of suppressor of cytokine signaling-3 by herpes simplex virus type 1 contributes to inhibition of the interferon signaling pathway. J Virol 78:6282–6286 [CrossRef]
    [Google Scholar]
  53. Zal T., Volkmann A., Stockinger B. 1994; Mechanisms of tolerance induction in major histocompatibility complex class II-restricted T cells specific for a blood-borne self-antigen. J Exp Med 180:2089–2099 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82931-0
Loading
/content/journal/jgv/10.1099/vir.0.82931-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error