1887

Abstract

In Africa, highly pathogenic avian influenza H5N1 virus was first detected in northern Nigeria and later also in other regions of the country. Since then, seven other African countries have reported H5N1 infections. This study reports a comparison of full-length genomic sequences of H5N1 isolates from seven chicken farms in Nigeria and chicken and hooded vultures in Burkina Faso with earlier H5N1 outbreaks worldwide. In addition, the antigenicity of Nigerian H5N1 isolates was compared with earlier strains. All African strains clustered within three sublineages denominated A (south-west Nigeria, Niger), B (south-west Nigeria, Egypt, Djibouti) and C (northern Nigeria, Burkina Faso, Sudan, Côte d'Ivoire), with distinct nucleotide and amino acid signatures and distinct geographical distributions within Africa. Probable non-African ancestors within the west Asian/Russian/European lineage distinct from the south-east Asian lineages were identified for each sublineage. All reported human cases in Africa were caused by sublineage B. Substitution rates were calculated on the basis of sequences from 11 strains from a single farm in south-west Nigeria. As H5N1 emerged essentially at the same time in the north and south-west of Nigeria, the substitution rates confirmed that the virus probably did not spread from the north to the south, given the observed sequence diversity, but that it entered the country via three independent introductions. The strains from Burkina Faso seemed to originate from northern Nigeria. At least two of the sublineages also circulated in Europe in 2006 as seen in Germany, further suggesting that the sublineages had already emerged outside of Africa and seemed to have followed the east African/west Asian and Black Sea/Mediterranean flyways of migratory birds.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82939-0
2007-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/8/2297.html?itemId=/content/journal/jgv/10.1099/vir.0.82939-0&mimeType=html&fmt=ahah

References

  1. Anisimova M., Nielsen R., Yang Z. 2003; Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 164:1229–1236
    [Google Scholar]
  2. Chen R., Holmes E. C. 2006; Avian influenza virus exhibits rapid evolutionary dynamics. Mol Biol Evol 23:2336–2341 [CrossRef]
    [Google Scholar]
  3. Chen H., Li Y., Li Z., Shi J., Shinya K., Deng G., Qi Q., Tian G., Fan S. & other authors (2006a). Properties and dissemination of H5N1 viruses isolated during an influenza outbreak in migratory waterfowl in western China. J Virol 80:5976–5983 [CrossRef]
    [Google Scholar]
  4. Chen H., Smith G. J., Li K. S., Wang J., Fan X. H., Rayner J. M., Vijaykrishna D., Zhang J. X., Zhang L. J. other authors 2006b; Establishment of multiple sublineages of H5N1 influenza virus in Asia: implications for pandemic control. Proc Natl Acad Sci U S A 103:2845–2850 [CrossRef]
    [Google Scholar]
  5. Claas E. C., Osterhaus A. D., van Beek R., De Jong J. C., Rimmelzwaan G. F., Senne D. A., Krauss S., Shortridge K. F., Webster R. G. 1998; Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351:472–477 [CrossRef]
    [Google Scholar]
  6. de Jong M. D., Tran T. T., Truong H. K., Vo M. H., Smith G. J., Nguyen V. C., Bach V. C., Phan T. Q., Do Q. H. other authors 2005; Oseltamivir resistance during treatment of influenza A (H5N1) infection. N Engl J Med 353:2667–2672 [CrossRef]
    [Google Scholar]
  7. Drummond A. J., Nicholls G. K., Rodrigo A. G., Solomon W. 2002; Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics 161:1307–1320
    [Google Scholar]
  8. Drummond A. J., Ho S. Y., Phillips M. J., Rambaut A. 2006; Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88 [CrossRef]
    [Google Scholar]
  9. Ducatez M. F., Olinger C. M., Owoade A. A., De Landtsheer S., Ammerlaan W., Niesters H. G., Osterhaus A. D., Fouchier R. A., Muller C. P. 2006a; Avian flu: multiple introductions of H5N1 in Nigeria. Nature 442:37 [CrossRef]
    [Google Scholar]
  10. Ducatez M. F., Owoade A. A., Abiola J. O., Muller C. P. 2006b; Molecular epidemiology of chicken anemia virus in Nigeria. Arch Virol 151:97–111 [CrossRef]
    [Google Scholar]
  11. Ducatez M. F., Tarnagda Z., Tahita M. C., Sow A., De Landtsheer S., Londt B. Z., Brown I. H., Osterhaus A. D. M. E., Fouchier R. A. M. other authors 2007; Genetic characterization of HA1 of HPAI H5N1 viruses from poultry and wild vultures in Burkina Faso. Emerg Infect Dis 13:611–613 [CrossRef]
    [Google Scholar]
  12. Fouchier R. A., Schneeberger P. M., Rozendaal F. W., Broekman J. M., Kemink S. A., Munster V., Kuiken T., Rimmelzwaan G. F., Schutten M. other authors 2004; Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A 101:1356–1361 [CrossRef]
    [Google Scholar]
  13. Garcia M., Suarez D. L., Crawford J. M., Latimer J. W., Slemons R. D., Swayne D. E., Perdue M. L. 1997; Evolution of H5 subtype avian influenza A viruses in North America. Virus Res 51:115–124 [CrossRef]
    [Google Scholar]
  14. Gultyaev A. P., Heus H. A., Olsthoorn R. C. 2007; An RNA conformational shift in recent H5N1 influenza A viruses. Bioinformatics 23:272–276 [CrossRef]
    [Google Scholar]
  15. Ha Y., Stevens D. J., Skehel J. J., Wiley D. C. 2001; X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proc Natl Acad Sci U S A 98:11181–11186 [CrossRef]
    [Google Scholar]
  16. Hatta M., Gao P., Halfmann P., Kawaoka Y. 2001; Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293:1840–1842 [CrossRef]
    [Google Scholar]
  17. Holmes E. C., Lipman D. J., Zamarin D., Yewdell J. W. 2006; Comment on ‘Large-scale sequence analysis of avian influenza isolates’. Science 313:1573 (author reply 1573
    [Google Scholar]
  18. Igbokwe I. O., Salako M. A., Rabo J. S., Hassan S. U. 1996; Outbreak of infectious bursal disease associated with acute septicaemic colibacillosis in adult prelayer hens. Rev Elev Med Vet Pays Trop 49:110–113
    [Google Scholar]
  19. Nielsen R., Yang Z. 1998; Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148:929–936
    [Google Scholar]
  20. Olsen B., Munster V. J., Wallensten A., Waldenstrom J., Osterhaus A. D., Fouchier R. A. 2006; Global patterns of influenza A virus in wild birds. Science 312:384–388 [CrossRef]
    [Google Scholar]
  21. Owoade A. A., Mulders M. N., Kohnen J., Ammerlaan W., Muller C. P. 2004a; High sequence diversity in infectious bursal disease virus serotype 1 in poultry and turkey suggests West-African origin of very virulent strains. Arch Virol 149:653–672 [CrossRef]
    [Google Scholar]
  22. Owoade A. A., Oluwayelu D. O., Fagbohun O. A., Ammerlaan W., Mulders M. N., Muller C. P. 2004b; Serologic evidence of chicken infectious anemia in commercial chicken flocks in southwest Nigeria. Avian Dis 48:202–205 [CrossRef]
    [Google Scholar]
  23. Owoade A. A., Ducatez M. F., Muller C. P. 2006; Seroprevalence of avian influenza virus, infectious bronchitis virus, reovirus, avian pneumovirus, infectious laryngotracheitis virus and avian leucosis virus in Nigerian poultry. Avian Dis 50:222–227 [CrossRef]
    [Google Scholar]
  24. Posada D., Crandall K. A. 1998; modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818 [CrossRef]
    [Google Scholar]
  25. Sainudiin R., Wong W. S., Yogeeswaran K., Nasrallah J. B., Yang Z., Nielsen R. 2005; Detecting site-specific physicochemical selective pressures: applications to the Class I HLA of the human major histocompatibility complex and the SRK of the plant sporophytic self-incompatibility system. J Mol Evol 60:315–326 [CrossRef]
    [Google Scholar]
  26. Salzberg S. L., Kingsford C., Cattoli G., Spiro D. J., Janies D. A., Aly M. M., Brown I. H., Couacy-Hymann E., De Mia G. M. other authors 2007; Genome analysis linking recent European and African influenza (H5N1) viruses. Emerg Infect Dis 13:713–718 [CrossRef]
    [Google Scholar]
  27. Scholtissek C., Quack G., Klenk H. D., Webster R. G. 1998; How to overcome resistance of influenza A viruses against adamantane derivatives. Antiviral Res 37:83–95 [CrossRef]
    [Google Scholar]
  28. Shinya K., Hamm S., Hatta M., Ito H., Ito T., Kawaoka Y. 2004; PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice. Virology 320:258–266 [CrossRef]
    [Google Scholar]
  29. Smith G. J., Naipospos T. S., Nguyen T. D., de Jong M. D., Vijaykrishna D., Usman T. B., Hassan S. S., Nguyen T. V., Dao T. V. other authors 2006; Evolution and adaptation of H5N1 influenza virus in avian and human hosts in Indonesia and Vietnam. Virology 350:258–268 [CrossRef]
    [Google Scholar]
  30. Swofford D. L. 2003 paup* – Phylogenetic Analysis Using Parsimony (*and other methods) Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  31. Yang Z. 1997; paml: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556
    [Google Scholar]
  32. Yang Z., Nielsen R., Goldman N., Pedersen A. M. 2000; Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449
    [Google Scholar]
  33. Yang Z., Wong W. S. W., Nielsen R. 2005; Bayes empirical Bayes interference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82939-0
Loading
/content/journal/jgv/10.1099/vir.0.82939-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error