1887

Abstract

Amino acid sequences of apple chlorotic leaf spot virus (ACLSV) coat protein (CP) were compared between 12 isolates from apple, plum and cherry, and 109 cDNA clones that were amplified directly from infected apple tissues. Phylogenetic analysis based on the amino acid sequences of CP showed that the isolates and cDNA clones were separated into two major clusters in which the combinations of the five amino acids at positions 40, 59, 75, 130 and 184 (Ala-Val-Phe-Ser-Met or Ser-Leu-Tyr-Thr-Leu) were highly conserved within each cluster. Site-directed mutagenesis using an infectious cDNA clone of ACLSV indicated that the combinations of two amino acids (Ala and Phe or Ser and Tyr) are necessary for infectivity to plants by mechanical inoculation. Moreover, an agroinoculation assay indicated that the substitution of a single amino acid (Ala to Ser or Phe to Tyr) resulted in extreme reduction in the accumulation of viral genomic RNA, double-stranded RNAs and viral proteins (movement protein and CP) in infiltrated tissues, suggesting that the combinations of the two amino acids at positions 40 and 75 are important for effective replication in host plant cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82984-0
2007-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/9/2611.html?itemId=/content/journal/jgv/10.1099/vir.0.82984-0&mimeType=html&fmt=ahah

References

  1. Bol J. F. 1999; Alfalfa mosaic virus and ilarviruses: involvement of coat protein in multiple steps of the replication cycle. J Gen Virol 80:1089–1102
    [Google Scholar]
  2. Bol J. F. 2003; Alfalfa mosaic virus : coat protein-dependent initiation of infection. Mol Plant Pathol 4:1–8 [CrossRef]
    [Google Scholar]
  3. Callaway A., Giesman-Cookmeyer D., Gillock E. T., Sit T. L., Lommel S. A. 2001; The multifunctional capsid proteins of plant RNA viruses. Annu Rev Phytopathol 39:419–460 [CrossRef]
    [Google Scholar]
  4. Chiba M., Reed J. C., Prokhnevsky A. I., Chapman E. J., Mawassi M., Koonin E. V., Carrington J. C., Dolja V. V. 2006; Diverse suppressors of RNA silencing enhance agroinfection by a viral replicon. Virology 346:7–14 [CrossRef]
    [Google Scholar]
  5. English J. J., Davenport G. F., Elmayan T., Vaucheret H., Baulcombe D. C. 1997; Requirement of sense transcription for homology-dependent virus resistance and trans -inactivation. Plant J 12:597–603 [CrossRef]
    [Google Scholar]
  6. German S., Candresse T., Lanneau M., Huet J. C., Pernollet J. C., Dunez J. 1990; Nucleotide sequence and genomic organization of apple chlorotic leaf spot closterovirus. Virology 179:104–112 [CrossRef]
    [Google Scholar]
  7. German-Retana S., Bergey B., Delbos R. P., Candresse T., Dunez J. 1997; Complete nucleotide sequence of the genome of a severe cherry isolate of apple chlorotic leaf spot trichovirus (ACLSV). Arch Virol 142:833–841 [CrossRef]
    [Google Scholar]
  8. Gopinath K., Dragnea B., Kao C. 2005; Interaction between Brome mosaic virus proteins and RNAs: effects on RNA replication, protein expression, and RNA stability. J Virol 79:14222–14234 [CrossRef]
    [Google Scholar]
  9. Guogas L. M., Laforest S. M., Gehrke L. 2005; Coat protein activation of alfalfa mosaic virus replication is concentration dependent. J Virol 79:5752–5761 [CrossRef]
    [Google Scholar]
  10. Isogai M., Yoshikawa N. 2005; Mapping the RNA-binding domain on the Apple chlorotic leaf spot virus movement protein. J Gen Virol 86:225–229 [CrossRef]
    [Google Scholar]
  11. Isogai M., Uyeda I., Lindsten K. 1998; Taxonomic characteristics of fijiviruses based on nucleotide sequences of the oat sterile dwarf virus genome. J Gen Virol 79:1479–1485
    [Google Scholar]
  12. Jaspars E. M. J. 1999; Genome activation in alfamo- and ilarviruses. Arch Virol 144:843–863 [CrossRef]
    [Google Scholar]
  13. Krab I. M., Caldwell C., Gallie D. R., Bol J. F. 2005; Coat protein enhances translational efficiency of Alfalfa mosaic virus RNAs and interacts with the eIF4G component of initiation factor eIF4F. J Gen Virol 86:1841–1849 [CrossRef]
    [Google Scholar]
  14. Liang X.-Z., Lee B. T. K., Wong S.-M. 2002; Covariation in the capsid protein of hibiscus chlorotic ringspot virus induced by serial passaging in a host that restricts movement leads to avirulence in its systemic host. J Virol 76:12320–12324 [CrossRef]
    [Google Scholar]
  15. Lister R. M. 1970 Apple chlorotic leaf spot virus (CMI/AAB Descriptions of Plant Viruses no 30 Kew, UK: CMI/AAB;
    [Google Scholar]
  16. Lu R., Folimonov A., Shintaku M., Li W. X., Falk B. W., Dawson W. O., Ding S.-W. 2004; Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proc Natl Acad Sci U S A 101:15742–15747 [CrossRef]
    [Google Scholar]
  17. Magome H., Yoshikawa N., Takahashi T., Ito T., Miyakawa T. 1997; Molecular variability of the genomes of capilloviruses from apple, Japanese pear, European pear, and citrus trees. Phytopathology 87:389–396 [CrossRef]
    [Google Scholar]
  18. Magome H., Yoshikawa N., Takahashi T. 1999; Single-strand conformation polymorphism analysis of apple stem grooving capillovirus sequence variants. Phytopathology 89:136–140 [CrossRef]
    [Google Scholar]
  19. Martelli G. P., Candresse T., Namba S. 1994; Trichovirus , a new genus of plant viruses. Arch Virol 134:451–455 [CrossRef]
    [Google Scholar]
  20. Neeleman L., Linthorst H. J. M., Bol J. F. 2004; Efficient translation of alfamovirus RNAs requires the binding of coat protein dimers to the 3′ termini of the viral RNAs. J Gen Virol 85:231–240 [CrossRef]
    [Google Scholar]
  21. Rico P., Ivars P., Elena S. F., Hernández C. 2006; Insights into the selective pressures restricting Pelargonium flower break virus genome variability: evidence for host adaptation. J Virol 80:8124–8132 [CrossRef]
    [Google Scholar]
  22. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  23. Sato K., Yoshikawa N., Takahashi T. 1993; Complete nucleotide sequence of the genome of an apple isolate of apple chlorotic leaf spot virus. J Gen Virol 74:1927–1931 [CrossRef]
    [Google Scholar]
  24. Satoh H., Yoshikawa N., Takahashi T. 1999; Construction and biolistic inoculation of an infectious cDNA clone of apple chlorotic leaf spot trichovirus. Nippon Shokubutsu Byori Gakkaiho 65:301–304
    [Google Scholar]
  25. Satoh H., Matsuda H., Kawamura T., Isogai M., Yoshikawa N., Takahashi T. 2000; Intracellular distribution, cell-to-cell trafficking and tubule-inducing activity of the 50 kDa movement protein of Apple chlorotic leaf spot virus fused to green fluorescent protein. J Gen Virol 81:2085–2093
    [Google Scholar]
  26. Thomas C. L., Leh V., Lederer C., Maule A. J. 2003; Turnip crinkle virus coat protein mediates suppression of RNA silencing in Nicotiana benthamiana . Virology 306:33–41 [CrossRef]
    [Google Scholar]
  27. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  28. Voinnet O., Lederer C., Baulcombe D. C. 2000; A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana . Cell 103:157–167 [CrossRef]
    [Google Scholar]
  29. Yaegashi H., Takahashi T., Isogai M., Kobori T., Ohki S., Yoshikawa N. 2007; Apple chlorotic leaf spot virus 50 kDa movement protein acts as a suppressor of systemic silencing without interfering with local silencing in Nicotiana benthamiana . J Gen Virol 88:316–324 [CrossRef]
    [Google Scholar]
  30. Yanase H. 1974; Studies on apple latent viruses in Japan. Bull Fruit Tree Res Stn Ser C 1:47–109
    [Google Scholar]
  31. Yoshikawa N. 2001 Apple chlorotic leaf spot virus [CMI/AAB Descriptions of Plant Viruses no. 386 (no. 30 revised)] Kew, UK: CMI/AAB;
    [Google Scholar]
  32. Yoshikawa N., Takahashi T. 1988; Properties of RNAs and proteins of apple stem grooving and apple chlorotic leaf spot viruses. J Gen Virol 69:241–245 [CrossRef]
    [Google Scholar]
  33. Yoshikawa N., Oogake S., Terada M., Miyabayashi S., Ikeda Y., Takahashi T., Ogawa K. 1999; Apple chlorotic leaf spot virus 50 kDa protein is targeted to plasmodesmata and accumulates in sieve elements in transgenic plant leaves. Arch Virol 144:2475–2483 [CrossRef]
    [Google Scholar]
  34. Yoshikawa N., Gotoh S., Umezawa M., Satoh N., Satoh H., Takahashi T., Ito T., Yoshida K. 2000; Transgenic Nicotiana occidentalis plants expressing the 50-kDa protein of Apple chlorotic leaf spot virus display increased susceptibility to homologous virus, but strong resistance to Grapevine berry inner necrosis virus . Phytopathology 90:311–316 [CrossRef]
    [Google Scholar]
  35. Yoshikawa N., Matsuda H., Oda Y., Isogai M., Takahashi T., Ito T., Yoshida Y. 2001; Genome heterogeneity of Apple stem pitting virus in apple trees. Acta Hortic 550:285–290
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82984-0
Loading
/content/journal/jgv/10.1099/vir.0.82984-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error