1887

Abstract

This study examines tissues from sequential-kill, time-course pathogenesis studies to refine estimates of the age at which disease-specific PrP (PrP) can first be detected in the central nervous system (CNS) and related peripheral nervous system ganglia of cattle incubating bovine spongiform encephalopathy (BSE). Such estimates are important for risk assessments of the age at which these tissues should be removed from cattle at slaughter to prevent human and animal exposure to BSE infection. Tissues were examined from cattle dosed orally with 100 or 1 g BSE-infected brain. Incubation period data for the doses were obtained from attack rate and the sequential-kill studies. A statistical model, fitted by maximum likelihood, accounted for the differences in the lognormal incubation period and the logistic probability of infection between different dose groups. Initial detection of PrP during incubation was invariably in the brainstem and the earliest was at 30 and 44 months post-exposure for the 100 g- and 1 g-dosed sequential-kill study groups, respectively. The point at which PrP in 50 % of the animals would be detected by immunohistochemistry applied to medulla–obex was estimated at 9.6 and 1.7 months before clinical onset for the 100 g- and 1 g-dosed cattle, respectively, with a low probability of detection in any of the tissues examined at more than 12 months before clinical onset. PrP was detected inconsistently in dorsal root ganglia, concurrent with or after detection in CNS, and not at all in certain sympathetic nervous system ganglia.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82987-0
2007-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/11/3198.html?itemId=/content/journal/jgv/10.1099/vir.0.82987-0&mimeType=html&fmt=ahah

References

  1. Arnold M., Wilesmith J. W. 2003; Modelling studies on BSE occurrence to assist in the review of the over 30 months rule in GB. Proc Biol Sci 270:2141–2145 [CrossRef]
    [Google Scholar]
  2. Arnold M. E., Wilesmith J. W. 2004; Estimation of the age-dependent risk of infection to BSE of dairy cattle in Great Britain. Prev Vet Med 66:35–47 [CrossRef]
    [Google Scholar]
  3. Austin A. R., Hawkins S. A. C., Kelay N. S., Simmons M. M. 1994; New observations on the clinical signs of BSE and scrapie. In A Consultation on BSE with the Scientific Veterinary Committee of the Commission of the European Communities , held in Brussels 14–15 September 1993 pp 277–287 Edited by Bradley R., Marchant B. Document VI/4131/94-EN Brussels: European Commission;
    [Google Scholar]
  4. Baldauf E., Beekes M., Diringer H. 1997; Evidence for an alternative direct route of access for the scrapie agent to the brain bypassing the spinal cord. J Gen Virol 78:1187–1197
    [Google Scholar]
  5. Beekes M., McBride P. A., Baldauf E. 1998; Cerebral targeting indicates vagal spread of infection in hamsters fed with scrapie. J Gen Virol 79:601–607
    [Google Scholar]
  6. Buschmann A., Groschup M. H. 2005; Highly bovine spongiform encephalopathy-sensitive transgenic mice confirm the essential restriction of infectivity to the nervous system in clinically diseased cattle. J Infect Dis 192:934–942 [CrossRef]
    [Google Scholar]
  7. Comer P. J., Huntly P. J. 2004; Exposure of the human population to BSE infectivity over the course of the BSE epidemic in Great Britain and the impact of changes to the Over Thirty Month Rule. J Risk Res 7:523–543 [CrossRef]
    [Google Scholar]
  8. Deslys J. P., Comoy E., Hawkins S., Simon S., Schimmell H., Wells G., Grassi J., Moynagh J. 2001; Screening slaughtered cattle for BSE. Nature 409:476–478
    [Google Scholar]
  9. Efron B. 1985; Bootstrap confidence intervals for a class of parametric problems. Biometrika 72:45–58 [CrossRef]
    [Google Scholar]
  10. Espinosa J. C., Morales M., Castilla J., Rogers M., Torres J. M. 2007; Progression of prion infectivity in asymptomatic cattle after oral bovine spongiform encephalopathy challenge. J Gen Virol 88:1379–1383 [CrossRef]
    [Google Scholar]
  11. European Food Safety Authority. 2005; Annex to the Opinion. Report of the Working Group on the assessment of the age limit in cattle for the removal of certain specified risk materials (SRM). . EFSA J 220:1–21 http://www.efsa.europa.eu/etc/medialib/efsa/science/biohaz/biohaz_opinions/opinion_annexes/933.Par.0001.File.dat/biohaz_report_ej220_srmremove_en1.pdf
    [Google Scholar]
  12. Ferguson N. M., Donnelly C. A. 2003; Assessment of risk posed by bovine spongiform encephalopathy in cattle in Great Britain and the impact of changes to current control measures. Proc Biol Sci 270:1579–1584 [CrossRef]
    [Google Scholar]
  13. Fraser H., Foster J. 1994; Transmission to mice, sheep and goats and bioassay of bovine tissues. In Transmissible Spongiform Encephalopathies: A Consultation on BSE with the Scientific Veterinary Committee of the Commission of the European Communities , held in Brussels; 14–15 September 1993 pp 145–159 Edited by Bradley R., Marchant B. Document VI/4131/94-EN Brussels: European Commission Agriculture;
  14. Grassi J., Simon S., Créminon C., Frobert Y., Comoy E., Trapmann S., Schimmel H., Hawkins S. A. C., Wells G. A. H. other authors 2001; Rapid test for the preclinical post-mortem diagnosis of BSE in central nervous system tissue. Vet Rec 149:577–582 [CrossRef]
    [Google Scholar]
  15. Hoffmann C., Ziegler U., Buschmann A., Weber A., Kupfer L., Oelschlegel A., Hammerschmidt B., Groschup M. H. 2007; Prions spread via the autonomic nervous system from the gut to the central nervous system in cattle incubating bovine spongiform encephalopathy. J Gen Virol 88:1048–1055 [CrossRef]
    [Google Scholar]
  16. Kimberlin R. H., Walker C. A. 1988; Incubation periods in six models of intraperitoneally injected scrapie depend mainly on the dynamics of agent replication within the nervous system and not the lymphoreticular system. J Gen Virol 69:2953–2960 [CrossRef]
    [Google Scholar]
  17. Kimberlin R. H., Walker C. A. 1989; Pathogenesis of scrapie in mice after intragastric infection. Virus Res 12:213–220 [CrossRef]
    [Google Scholar]
  18. Konold T., Bone G., Ryder S., Hawkins S. A. C., Courtin F., Berthelin-Baker C. 2004; Clinical findings in 78 suspected cases of bovine spongiform encephalopathy in Great Britain. Vet Rec 155:659–666 [CrossRef]
    [Google Scholar]
  19. Korth C., Stierli B., Streit P., Moser M., Schaller O., Fischer R., Schulz-Schaeffer W., Kretzschmar H., Raeber A. other authors 1997; Prion (PrPSc)-specific epitope defined by a monoclonal-antibody. Nature 390:74–77 [CrossRef]
    [Google Scholar]
  20. MAFF 1995 Bovine Spongiform Encephalopathy in Great Britain: a Progress Report London: Ministry of Agriculture, Fisheries and Food;
    [Google Scholar]
  21. Masujin K., Matthews D., Wells G. A. H., Mohri S., Yokoyama T. 2007; Prions in the peripheral nerves of bovine spongiform encephalopathy-affected cattle. J Gen Virol 88:1850–1858 [CrossRef]
    [Google Scholar]
  22. McBride P. A., Beekes M. 1999; Pathological PrP is abundant in sympathetic and sensory ganglia of hamsters fed with scrapie. Neurosci Lett 265:135–138 [CrossRef]
    [Google Scholar]
  23. McBride P. A., Schulz-Schaeffer W. J., Donaldson M., Bruce M., Diringer H., Kretzschmar H. A., Beekes M. 2001; Early spread of scrapie from the gastrointestinal tract to the central nervous system involves autonomic fibers of the splanchnic and vagus nerves. J Virol 75:9320–9327 [CrossRef]
    [Google Scholar]
  24. O'Rourke K. I., Baszler T. V., Besser T. E., Miller J. M., Cutlip R. C., Wells G. A., Ryder S. J., Parish S. M., Hamir A. N. other authors 2000; Preclinical diagnosis of scrapie by immunohistochemistry of third eyelid lymphoid tissue. J Clin Microbiol 38:3254–3259
    [Google Scholar]
  25. Schimmel H., Catalani P., Le Guern L., Prokisch J., Philipp W., Trapmann W., Zeleny R., Moynagh J. 2002; The Evaluation of Five Rapid Tests for the Diagnosis of Transmissible Spongiform Encephalopathy in Bovines (2nd Study) . http://ec.europa.eu/food/food/biosafety/bse/bse42_en.pdf
  26. Stack M. J. 2004; Western immunoblotting techniques for the study of transmissible spongiform encephalopathies. In Techniques in Prion Research pp 97–116 Edited by Lehmann S., Grassi J. Berlin: Birkhäuser Verlag;
    [Google Scholar]
  27. Terry L. A., Marsh S., Ryder S. J., Hawkins S. A. C., Wells G. A. H., Spencer Y. I. 2003; Detection of disease-specific PrP in the distal ileum of cattle orally exposed to the BSE agent. Vet Rec 152:387–392 [CrossRef]
    [Google Scholar]
  28. van Keulen L. J. M., Schreuder B. E. C., Vromans M. E. W., Langeveld J. P. M., Smiths M. A. 2000; Pathogenesis of natural scrapie in sheep. Arch Virol Suppl 16:57–71
    [Google Scholar]
  29. Wells G. A. H., Hawkins S. A. C. 2004; Animal models of transmissible bovine spongiform encephalopathies: experimental infection, observation and tissue collection. In Techniques in Prion Research pp 37–71 Edited by Lehmann S., Grassi J. Basel: Birkhäuser Verlag;
    [Google Scholar]
  30. Wells G. A. H., Wilesmith J. W. 2004; Bovine spongiform encephalopathy and related diseases. In Prion Biology and Diseases , 2nd edn. pp 595–628 Edited by Prusiner S. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Wells G. A. H., Scott A. C., Johnson C. T., Gunning R. F., Hancock R. D., Jeffrey M., Dawson M., Bradley R. 1987; A novel progressive spongiform encephalopathy in cattle. Vet Rec 121:419–420 [CrossRef]
    [Google Scholar]
  32. Wells G. A. H., Hancock R. D., Cooley W. A., Richards M. S., Higgins R. J., David G. P. 1989; Bovine spongiform encephalopathy: diagnostic significance of vacuolar change in selected nuclei of the medulla oblongata. Vet Rec 125:521–524 [CrossRef]
    [Google Scholar]
  33. Wells G. A. H., Dawson M., Hawkins S. A. C., Austin A. R., Green R. B., Dexter I., Horigan M. W., Simmons M. M. 1996; Preliminary observations on the pathogenesis of experimental bovine spongiform encephalopathy. In Bovine Spongiform Encephalopathy – The BSE Dilemma pp 28–44 Edited by Gibbs C. J. Jr New York: Springer;
    [Google Scholar]
  34. Wells G. A. H., Hawkins S. A. C., Green R. B., Austin A. R., Dexter I., Spencer Y. I., Chaplin M. J., Stack M. J., Dawson M. 1998; Preliminary observations on the pathogenesis of experimental bovine spongiform encephalopathy (BSE): an update. Vet Rec 142:103–106 [CrossRef]
    [Google Scholar]
  35. Wells G. A. H., Hawkins S. A. C., Green R. B., Spencer Y. I., Dexter I., Dawson M. 1999; Limited detection of sternal bone marrow infectivity in the clinical phase of experimental bovine spongiform encephalopathy (BSE). Vet Rec 144:292–294 [CrossRef]
    [Google Scholar]
  36. Wells G. A. H., Spiropoulos J., Hawkins S. A. C., Ryder S. J. 2005; Pathogenesis of experimental bovine spongiform encephalopathy: preclinical infectivity in tonsil and observations on the distribution of lingual tonsil in slaughtered cattle. Vet Rec 156:401–407 [CrossRef]
    [Google Scholar]
  37. Wells G. A. H., Konold T., Arnold M. E., Austin A. R., Hawkins S. A. C., Stack M., Simmons M. M., Lee Y. H., Gavier-Widén D. other authors 2007; Bovine spongiform encephalopathy: the effect of oral exposure dose on attack rate and incubation period in cattle. J Gen Virol 88:1363–1373 [CrossRef]
    [Google Scholar]
  38. Wilesmith J. W., Wells G. A. H., Cranwell M. P., Ryan J. B. M. 1988; Bovine spongiform encephalopathy: epidemiological studies. Vet Rec 123:638–644
    [Google Scholar]
  39. Wilesmith J. W., Ryan J. B. M., Hueston W. D. 1992; Bovine spongiform encephalopathy: case control studies of calf feeding practices and meat and bone meal inclusion in proprietary concentrates. Res Vet Sci 52:325–331 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82987-0
Loading
/content/journal/jgv/10.1099/vir.0.82987-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error