1887

Abstract

Recombinant vaccinia viruses based on the attenuated NYVAC and MVA strains are promising vaccine candidates against a broad spectrum of diseases. Whilst these vectors are safe and immunogenic in animals and humans, little is known about their comparative behaviour . In this investigation, a head-to-head analysis was carried out of virus dissemination in mice inoculated by the mucosal or systemic route with replication-competent (WRluc) and attenuated recombinant (MVAluc and NYVACluc) viruses expressing the luciferase gene. Bioluminescence imaging showed that, in contrast to WRluc, the attenuated recombinants expressed the reporter gene transiently, with MVAluc expression limited to the first 24 h and NYVACluc giving a longer signal, up to 72 h post-infection, for most of the routes assayed. Moreover, luciferase levels in MVAluc-infected tissues peaked earlier than those in tissues infected by NYVACluc. These findings may be of immunological relevance when these vectors are used as recombinant vaccines.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83018-0
2007-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/9/2473.html?itemId=/content/journal/jgv/10.1099/vir.0.83018-0&mimeType=html&fmt=ahah

References

  1. Amara R. R., Villinger F., Altman J. D., Lydy S. L., O’Neil S. P., Staprans S. I., Montefiori D. C., Xu Y., Herndon J. G. other authors 2001; Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science 292:69–74 [CrossRef]
    [Google Scholar]
  2. Antoine G., Scheiflinger F., Dorner F., Falkner F. G. 1998; The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 244:365–396 [CrossRef]
    [Google Scholar]
  3. Bonnet M. C., Tartaglia J., Verdier F., Kourilsky P., Lindberg A., Klein M., Moingeon P. 2000; Recombinant viruses as a tool for therapeutic vaccination against human cancers. Immunol Lett 74:11–25 [CrossRef]
    [Google Scholar]
  4. Chahroudi A., Chavan R., Kozyr N., Waller E. K., Silvestri G., Feinberg M. B. 2005; Vaccinia virus tropism for primary hematolymphoid cells is determined by restricted expression of a unique virus receptor. J Virol 79:10397–10407 [CrossRef]
    [Google Scholar]
  5. Cox W. I., Tartaglia J., Paoletti E. 1993; Induction of cytotoxic T lymphocytes by recombinant canarypox (ALVAC) and attenuated vaccinia (NYVAC) viruses expressing the HIV-1 envelope glycoprotein. Virology 195:845–850 [CrossRef]
    [Google Scholar]
  6. Didierlaurent A., Ramirez J. C., Gherardi M., Zimmerli S. C., Graf M., Orbea H. A., Pantaleo G., Wagner R., Esteban M. other authors 2004; Attenuated poxviruses expressing a synthetic HIV protein stimulate HLA-A2-restricted cytotoxic T-cell responses. Vaccine 22:3395–3403 [CrossRef]
    [Google Scholar]
  7. Doyle T. C., Burns S. M., Contag C. H. 2004; In vivo bioluminescence imaging for integrated studies of infection. Cell Microbiol 6:303–317 [CrossRef]
    [Google Scholar]
  8. Edinger M., Sweeney T. J., Tucker A. A., Olomu A. B., Negrin R. S., Contag C. H. 1999; Noninvasive assessment of tumor cell proliferation in animal models. Neoplasia 1:303–310 [CrossRef]
    [Google Scholar]
  9. Gherardi M. M., Najera J. L., Perez-Jimenez E., Guerra S., Garcia-Sastre A., Esteban M. 2003; Prime-boost immunization schedules based on influenza virus and vaccinia virus vectors potentiate cellular immune responses against human immunodeficiency virus Env protein systemically and in the genitorectal draining lymph nodes. J Virol 77:7048–7057 [CrossRef]
    [Google Scholar]
  10. Gomez C. E., Abaitua F., Rodriguez D., Esteban M. 2004; Efficient CD8+ T cell response to the HIV-env V3 loop epitope from multiple virus isolates by a DNA prime/vaccinia virus boost (rWR and rMVA strains) immunization regime and enhancement by the cytokine IFN- γ . Virus Res 105:11–22 [CrossRef]
    [Google Scholar]
  11. Gomez C. E., Najera J. L., Jimenez E. P., Jimenez V., Wagner R., Graf M., Frachette M. J., Liljestrom P., Pantaleo G., Esteban M. 2007a; Head-to-head comparison on the immunogenicity of two HIV/AIDS vaccine candidates based on the attenuated poxvirus strains MVA and NYVAC co-expressing in a single locus the HIV-1BX08 gp120 and HIV-1(IIIB) Gag-Pol-Nef proteins of clade B. Vaccine 25:2863–2885 [CrossRef]
    [Google Scholar]
  12. Gomez C. E., Najera J. L., Jimenez V., Bieler K., Wild J., Kostic L., Heidari S., Chen M., Frachette M. J. other authors 2007b; Generation and immunogenicity of novel HIV/AIDS vaccine candidates targeting HIV-1 Env/Gag-Pol-Nef antigens of clade C. Vaccine 25:1969–1992 [CrossRef]
    [Google Scholar]
  13. Guerra S., Lopez-Fernandez L. A., Conde R., Pascual-Montano A., Harshman K., Esteban M. 2004; Microarray analysis reveals characteristic changes of host cell gene expression in response to attenuated modified vaccinia virus Ankara infection of human HeLa cells. J Virol 78:5820–5834 [CrossRef]
    [Google Scholar]
  14. Guerra S., Lopez-Fernandez L. A., Pascual-Montano A., Najera J. L., Zaballos A., Esteban M. 2006; Host response to the attenuated poxvirus vector NYVAC: upregulation of apoptotic genes and NF- κ B-responsive genes in infected HeLa cells. J Virol 80:985–998 [CrossRef]
    [Google Scholar]
  15. Hel Z., Tsai W. P., Thornton A., Nacsa J., Giuliani L., Tryniszewska E., Poudyal M., Venzon D., Wang X. other authors 2001; Potentiation of simian immunodeficiency virus (SIV)-specific CD4+ and CD8+ T cell responses by a DNA-SIV and NYVAC-SIV prime/boost regimen. J Immunol 167:7180–7191 [CrossRef]
    [Google Scholar]
  16. Mayr A., Stickl H., Muller H. K., Danner K., Singer H. 1978; The smallpox vaccination strain MVA: marker, genetic structure, experience gained with the parenteral vaccination and behavior in organisms with a debilitated defence mechanism. Zentralbl Bakteriol [B] 167:375–390 (in German
    [Google Scholar]
  17. Najera J. L., Gomez C. E., Domingo-Gil E., Gherardi M. M., Esteban M. 2006; Cellular and biochemical differences between two attenuated poxvirus vaccine candidates (MVA and NYVAC) and role of the C7L gene. J Virol 80:6033–6047 [CrossRef]
    [Google Scholar]
  18. Ramirez J. C., Gherardi M. M., Esteban M. 2000; Biology of attenuated modified vaccinia virus Ankara recombinant vector in mice: virus fate and activation of B- and T-cell immune responses in comparison with the Western Reserve strain and advantages as a vaccine. J Virol 74:923–933 [CrossRef]
    [Google Scholar]
  19. Ray P., De A., Min J. J., Tsien R. Y., Gambhir S. S. 2004; Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res 64:1323–1330 [CrossRef]
    [Google Scholar]
  20. Rodriguez J. F., Rodriguez D., Rodriguez J. R., McGowan E. B., Esteban M. 1988; Expression of the firefly luciferase gene in vaccinia virus: a highly sensitive gene marker to follow virus dissemination in tissues of infected animals. Proc Natl Acad Sci U S A 85:1667–1671 [CrossRef]
    [Google Scholar]
  21. Sadikot R. T., Blackwell T. S. 2005; Bioluminescence imaging. Proc Am Thorac Soc 2:537–540 [CrossRef]
    [Google Scholar]
  22. Tartaglia J., Cox W. I., Taylor J., Perkus M., Riviere M., Meignier B., Paoletti E. 1992a; Highly attenuated poxvirus vectors. AIDS Res Hum Retroviruses 8:1445–1447
    [Google Scholar]
  23. Tartaglia J., Perkus M. E., Taylor J., Norton E. K., Audonnet J. C., Cox W. I., Davis S. W., van der Hoeven J., Meignier B. & other authors 1992b; NYVAC: a highly attenuated strain of vaccinia virus. Virology 188:217–232 [CrossRef]
    [Google Scholar]
  24. Webster D. P., Dunachie S., Vuola J. M., Berthoud T., Keating S., Laidlaw S. M., McConkey S. J., Poulton I., Andrews L. other authors 2005; Enhanced T cell-mediated protection against malaria in human challenges by using the recombinant poxviruses FP9 and modified vaccinia virus Ankara. Proc Natl Acad Sci U S A 102:4836–4841 [CrossRef]
    [Google Scholar]
  25. Zavala F., Rodrigues M., Rodriguez D., Rodriguez J. R., Nussenzweig R. S., Esteban M. 2001; A striking property of recombinant poxviruses: efficient inducers of in vivo expansion of primed CD8+ T cells. Virology 280:155–159 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83018-0
Loading
/content/journal/jgv/10.1099/vir.0.83018-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error