1887

Abstract

Transcription from morbillivirus genomes commences at a single promoter in the 3′ non-coding terminus, with the six genes being transcribed sequentially. The 3′ and 5′ untranslated regions (UTRs) of the genes (mRNA sense), together with the intergenic trinucleotide spacer, comprise the non-coding sequences (NCS) of the virus and contain the conserved gene end and gene start signals, respectively. Bicistronic minigenomes containing transcription units (TUs) encoding autofluorescent reporter proteins separated by measles virus (MV) NCS were used to give a direct estimation of gene expression in single, living cells by assessing the relative amounts of each fluorescent protein in each cell. Initially, five minigenomes containing each of the MV NCS were generated. Assays were developed to determine the amount of each fluorescent protein in cells at both cell population and single-cell levels. This revealed significant variations in gene expression between cells expressing the same NCS-containing minigenome. The minigenome containing the M/F NCS produced significantly lower amounts of fluorescent protein from the second TU (TU2), compared with the other minigenomes. A minigenome with a truncated F 5′ UTR had increased expression from TU2. This UTR is 524 nt longer than the other MV 5′ UTRs. Insertions into the 5′ UTR of the enhanced green fluorescent protein gene in the minigenome containing the N/P NCS showed that specific sequences, rather than just the additional length of F 5′ UTR, govern this decreased expression from TU2.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83106-0
2007-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/10/2710.html?itemId=/content/journal/jgv/10.1099/vir.0.83106-0&mimeType=html&fmt=ahah

References

  1. Abraham G., Banerjee A. K. 1976; Sequential transcription of the genes of vesicular stomatitis virus. Proc Natl Acad Sci U S A 73:1504–1508 [CrossRef]
    [Google Scholar]
  2. Auwaerter P. G., Kaneshima H., McCune J. M., Wiegand G., Griffin D. E. 1996; Measles virus infection of thymic epithelium in the SCID-hu mouse leads to thymocyte apoptosis. J Virol 70:3734–3740
    [Google Scholar]
  3. Ball L. A., White C. N. 1976; Order of transcription of genes of vesicular stomatitis virus. Proc Natl Acad Sci U S A 73:442–446 [CrossRef]
    [Google Scholar]
  4. Barr J. N., Whelan S. P., Wertz G. W. 1997a; Cis -acting signals involved in termination of vesicular stomatitis virus mRNA synthesis include the conserved AUAC and the U7 signal for polyadenylation. J Virol 71:8718–8725
    [Google Scholar]
  5. Barr J. N., Whelan S. P., Wertz G. W. 1997b; Role of the intergenic dinucleotide in vesicular stomatitis virus RNA transcription. J Virol 71:1794–1801
    [Google Scholar]
  6. Barr J. N., Whelan S. P., Wertz G. W. 2002; Transcriptional control of the RNA-dependent RNA polymerase of vesicular stomatitis virus. Biochim Biophys Acta 1577:337–353 [CrossRef]
    [Google Scholar]
  7. Bellini W. J., Englund G., Rozenblatt S., Arnheiter H., Richardson C. D. 1985; Measles virus P gene codes for two proteins. J Virol 53:908–919
    [Google Scholar]
  8. Bridgen A., Elliott R. M. 1996; Rescue of a segmented negative-strand RNA virus entirely from cloned complementary DNAs. Proc Natl Acad Sci U S A 93:15400–15404 [CrossRef]
    [Google Scholar]
  9. Britton P., Green P., Kottier S., Mawditt K. L., Penzes Z., Cavanagh D., Skinner M. A. 1996; Expression of bacteriophage T7 RNA polymerase in avian and mammalian cells by a recombinant fowlpox virus. J Gen Virol 77:963–967 [CrossRef]
    [Google Scholar]
  10. Calain P., Roux L. 1993; The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. J Virol 67:4822–4830
    [Google Scholar]
  11. Castaneda S. J., Wong T. C. 1989; Measles virus synthesizes both leaderless and leader-containing polyadenylated RNAs in vivo. J Virol 63:2977–2986
    [Google Scholar]
  12. Castaneda S. J., Wong T. C. 1990; Leader sequence distinguishes between translatable and encapsidated measles virus RNAs. J Virol 64:222–230
    [Google Scholar]
  13. Cattaneo R., Rebmann G., Schmid A., Baczko K., ter Meulen V., Billeter M. A. 1987; Altered transcription of a defective measles virus genome derived from a diseased human brain. EMBO J 6:681–688
    [Google Scholar]
  14. Cattaneo R., Kaelin K., Baczko K., Billeter M. A. 1989; Measles virus editing provides an additional cysteine-rich protein. Cell 56:759–764 [CrossRef]
    [Google Scholar]
  15. Cordey S., Roux L. 2006; Transcribing paramyxovirus RNA polymerase engages the template at its 3′ extremity. J Gen Virol 87:665–672 [CrossRef]
    [Google Scholar]
  16. Crowley J. C., Dowling P. C., Menonna J., Silverman J. I., Schuback D., Cook S. D., Blumberg B. M. 1988; Sequence variability and function of measles virus 3′ and 5′ ends and intercistronic regions. Virology 164:498–506 [CrossRef]
    [Google Scholar]
  17. Duprex W. P., McQuaid S., Hangartner L., Billeter M. A., Rima B. K. 1999; Observation of measles virus cell-to-cell spread in astrocytoma cells by using a green fluorescent protein-expressing recombinant virus. J Virol 73:9568–9575
    [Google Scholar]
  18. Edworthy N. L., Easton A. J. 2005; Mutational analysis of the avian pneumovirus conserved transcriptional gene start sequence identifying critical residues. J Gen Virol 86:3343–3347 [CrossRef]
    [Google Scholar]
  19. Egelman E. H., Wu S. S., Amrein M., Portner A., Murti G. 1989; The Sendai virus nucleocapsid exists in at least four different helical states. J Virol 63:2233–2243
    [Google Scholar]
  20. Evans S. A., Belsham G. J., Barrett T. 1990; The role of the 5′ nontranslated regions of the fusion protein mRNAs of canine distemper virus and rinderpest virus. Virology 177:317–323 [CrossRef]
    [Google Scholar]
  21. Finke S., Cox J. H., Conzelmann K. K. 2000; Differential transcription attenuation of rabies virus genes by intergenic regions: generation of recombinant viruses overexpressing the polymerase gene. J Virol 74:7261–7269 [CrossRef]
    [Google Scholar]
  22. Furtado A., Henry R. 2002; Measurement of green fluorescent protein concentration in single cells by image analysis. Anal Biochem 310:84–92 [CrossRef]
    [Google Scholar]
  23. Hasel K. W., Day S., Millward S., Richardson C. D., Bellini W. J., Greer P. A. 1987; Characterization of cloned measles virus mRNAs by in vitro transcription, translation, and immunoprecipitation. Intervirology 28:26–39 [CrossRef]
    [Google Scholar]
  24. Kolakofsky D., Pelet T., Garcin D., Hausmann S., Curran J., Roux L. 1998; Paramyxovirus RNA synthesis and the requirement for hexamer genome length: the rule of six revisited. J Virol 72:891–899
    [Google Scholar]
  25. Kuo L., Fearns R., Collins P. L. 1996a; The structurally diverse intergenic regions of respiratory syncytial virus do not modulate sequential transcription by a dicistronic minigenome. J Virol 70:6143–6150
    [Google Scholar]
  26. Kuo L., Grosfeld H., Cristina J., Hill M. G., Collins P. L. 1996b; Effects of mutations in the gene-start and gene-end sequence motifs on transcription of monocistronic and dicistronic minigenomes of respiratory syncytial virus. J Virol 70:6892–6901
    [Google Scholar]
  27. Kuo L., Fearns R., Collins P. L. 1997; Analysis of the gene start and gene end signals of human respiratory syncytial virus: quasi-templated initiation at position 1 of the encoded mRNA. J Virol 71:4944–4953
    [Google Scholar]
  28. Lamb R. L., Kolakofsky D. 2001; Paramyxoviridae : the viruses and their replication. In Fields Virology , 4th edn. pp 1305–1340 Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  29. Radecke F., Spielhofer P., Schneider H., Kaelin K., Huber M., Dotsch C., Christiansen G., Billeter M. A. 1995; Rescue of measles viruses from cloned DNA. EMBO J 14:5773–5784
    [Google Scholar]
  30. Richardson C., Hull D., Greer P., Hasel K., Berkovich A., Englund G., Bellini W., Rima B., Lazzarini R. 1986; The nucleotide sequence of the mRNA encoding the fusion protein of measles virus (Edmonston strain): a comparison of fusion proteins from several different paramyxoviruses. Virology 155:508–523 [CrossRef]
    [Google Scholar]
  31. Rima B. K., Baczko K., Clarke D. K., Curran M. D., Martin S. J., Billeter M. A., ter Meulen V. 1986; Characterization of clones for the sixth (L) gene and a transcriptional map for morbilliviruses. J Gen Virol 67:1971–1978 [CrossRef]
    [Google Scholar]
  32. Rima B. K., Collin A. M., Earle J. A. 2005; Completion of the sequence of a cetacean morbillivirus and comparative analysis of the complete genome sequences of four morbilliviruses. Virus Genes 30:113–119 [CrossRef]
    [Google Scholar]
  33. Rota J. S., Wang Z. D., Rota P. A., Bellini W. J. 1994; Comparison of sequences of the H, F, and N coding genes of measles virus vaccine strains. Virus Res 31:317–330 [CrossRef]
    [Google Scholar]
  34. Schneider-Schaulies S., Liebert U. G., Baczko K., Cattaneo R., Billeter M., ter Meulen V. 1989; Restriction of measles virus gene expression in acute and subacute encephalitis of Lewis rats. Virology 171:525–534 [CrossRef]
    [Google Scholar]
  35. Schnell M. J., Buonocore L., Whitt M. A., Rose J. K. 1996; The minimal conserved transcription stop-start signal promotes stable expression of a foreign gene in vesicular stomatitis virus. J Virol 70:2318–2323
    [Google Scholar]
  36. Sidhu M. S., Husar W., Cook S. D., Dowling P. C., Udem S. A. 1993; Canine distemper terminal and intergenic non-protein coding nucleotide sequences: completion of the entire CDV genome sequence. Virology 193:66–72 [CrossRef]
    [Google Scholar]
  37. Sidhu M. S., Chan J., Kaelin K., Spielhofer P., Radecke F., Schneider H., Masurekar M., Dowling P. C., Billeter M. A., Udem S. A. 1995; Rescue of synthetic measles virus minireplicons: measles genomic termini direct efficient expression and propagation of a reporter gene. Virology 208:800–807 [CrossRef]
    [Google Scholar]
  38. Stillman E. A., Whitt M. A. 1998; The length and sequence composition of vesicular stomatitis virus intergenic regions affect mRNA levels and the site of transcript initiation. J Virol 72:5565–5572
    [Google Scholar]
  39. Takeda M., Ohno S., Seki F., Nakatsu Y., Tahara M., Yanagi Y. 2005; Long untranslated regions of the measles virus M and F genes control virus replication and cytopathogenicity. J Virol 79:14346–14354 [CrossRef]
    [Google Scholar]
  40. Tapparel C., Maurice D., Roux L. 1998; The activity of Sendai virus genomic and antigenomic promoters requires a second element past the leader template regions: a motif (GNNNNN)3 is essential for replication. J Virol 72:3117–3128
    [Google Scholar]
  41. Valsamakis A., Schneider H., Auwaerter P. G., Kaneshima H., Billeter M., Griffin D. E. 1998; Recombinant measles viruses with mutations in the C, V or F gene have altered growth phenotypes in vivo. J Virol 72:7754–7761
    [Google Scholar]
  42. Verkhusha V. V., Kuznetsova I. M., Stepanenko O. V., Zaraisky A. G., Shavlovsky M. M., Turoverov K. K., Uversky V. N. 2003; High stability of Discosoma DsRed as compared to Aequorea EGFP. Biochemistry 42:7879–7884 [CrossRef]
    [Google Scholar]
  43. Vulliemoz D., Roux L. 2002; Given the opportunity, the Sendai virus RNA-dependent RNA polymerase could as well enter its template internally. J Virol 76:7987–7995 [CrossRef]
    [Google Scholar]
  44. Watanabe S., Watanabe T., Noda T., Takada A., Feldmann H., Jasenosky L. D., Kawaoka Y. 2004; Production of novel Ebola virus-like particles from cDNAs: an alternative to Ebola virus generation by reverse genetics. J Virol 78:999–1005 [CrossRef]
    [Google Scholar]
  45. Whelan S. P., Wertz G. W. 2002; Transcription and replication initiate at separate sites on the vesicular stomatitis virus genome. Proc Natl Acad Sci U S A 99:9178–9183 [CrossRef]
    [Google Scholar]
  46. Whelan S. P., Barr J. N., Wertz G. W. 2004; Transcription and replication of nonsegmented negative-strand RNA viruses. Curr Top Microbiol Immunol 283:61–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83106-0
Loading
/content/journal/jgv/10.1099/vir.0.83106-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error