1887

Abstract

The human immunodeficiency virus type 1 (HIV-1) vpu protein increases the release of virus particles from infected cells. Mutations that abrogate vpu function have a profound effect on HIV-1 replication in primary macrophage cultures. About 1.24 % of primary isolates in the HIV databases have start-codon mutations. In addition, the envelope of the AD8 isolate was reported to compensate for the lack of vpu, whilst the YU-2 virus (cloned directly from the brain tissue of an infected individual) is macrophage-tropic, despite having a start-codon mutation. These observations raise the possibility that envelopes evolve to compensate for the loss of vpu function . Chimeric and replication-competent clones were constructed that contained the envelopes of SF162, AD8 or YU-2. Macrophages were infected with these chimeras and virus release was measured over time by a reverse transcriptase ELISA. It was found that vpu-deficient chimeras carrying AD8 and YU-2 envelopes were consistently released at lower levels than their wild-type (wt) vpu counterparts, indicating that these envelopes did not compensate for the lack of vpu. Non-chimeric and AD8 and YU-2 followed similar patterns, although replication by vpu-deficient AD8 was variable, with virion release reaching 60 % of that recorded for AD8 with a wt . In summary, no evidence was found that the AD8 or YU-2 envelopes can compensate for the lack of vpu for replication in macrophages.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83120-0
2007-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/10/2780.html?itemId=/content/journal/jgv/10.1099/vir.0.83120-0&mimeType=html&fmt=ahah

References

  1. Abada P., Noble B., Cannon P. M. 2005; Functional domains within the human immunodeficiency virus type 2 envelope protein required to enhance virus production. J Virol 79:3627–3638 [CrossRef]
    [Google Scholar]
  2. Adachi A., Miyaura M., Sakurai A., Yoshida A., Koyama A. H., Fujita M. 2001; Growth characteristics of SHIV without the vpu gene. Int J Mol Med 8:641–644
    [Google Scholar]
  3. Balliet J. W., Kolson D. L., Eiger G., Kim F. M., McGann K. A., Srinivasan A., Collman R. 1994; Distinct effects in primary macrophages and lymphocytes of the human immunodeficiency virus type 1 accessory genes vpr , vpu , and nef : mutational analysis of a primary HIV-1 isolate. Virology 200:623–631 [CrossRef]
    [Google Scholar]
  4. Bannert N., Schenten D., Craig S., Sodroski J. 2000; The level of CD4 expression limits infection of primary rhesus monkey macrophages by a T-tropic simian immunodeficiency virus and macrophagetropic human immunodeficiency viruses. J Virol 74:10984–10993 [CrossRef]
    [Google Scholar]
  5. Besnard-Guerin C., Belaidouni N., Lassot I., Segeral E., Jobart A., Marchal C., Benarous R. 2004; HIV-1 Vpu sequesters β -transducin repeat-containing protein ( β TrCP) in the cytoplasm and provokes the accumulation of β -catenin and other SCF β TrCP substrates. J Biol Chem 279:788–795 [CrossRef]
    [Google Scholar]
  6. Bour S., Strebel K. 1996; The human immunodeficiency virus (HIV) type 2 envelope protein is a functional complement to HIV type 1 Vpu that enhances particle release of heterologous retroviruses. J Virol 70:8285–8300
    [Google Scholar]
  7. Bour S., Schubert U., Strebel K. 1995; The human immunodeficiency virus type 1 Vpu protein specifically binds to the cytoplasmic domain of CD4: implications for the mechanism of degradation. J Virol 69:1510–1520
    [Google Scholar]
  8. Bour S., Schubert U., Peden K., Strebel K. 1996; The envelope glycoprotein of human immunodeficiency virus type 2 enhances viral particle release: a Vpu-like factor?. J Virol 70:820–829
    [Google Scholar]
  9. Brown A., Moghaddam S., Kawano T., Cheng-Mayer C. 2004; Multiple human immunodeficiency virus type 1 Nef functions contribute to efficient replication in primary human macrophages. J Gen Virol 85:1463–1469 [CrossRef]
    [Google Scholar]
  10. Callahan M. A., Handley M. A., Lee Y. H., Talbot K. J., Harper J. W., Panganiban A. T. 1998; Functional interaction of human immunodeficiency virus type 1 Vpu and Gag with a novel member of the tetratricopeptide repeat protein family. J Virol 72:5189–5197
    [Google Scholar]
  11. Cheng-Mayer C., Quiroga M., Tung J. W., Dina D., Levy J. A. 1990; Viral determinants of human immunodeficiency virus type 1 T-cell or macrophage tropism, cytopathogenicity, and CD4 antigen modulation. J Virol 64:4390–4398
    [Google Scholar]
  12. Cohen E. A., Terwilliger E. F., Sodroski J. G., Haseltine W. A. 1988; Identification of a protein encoded by the vpu gene of HIV-1. Nature 334:532–534 [CrossRef]
    [Google Scholar]
  13. Dejucq N., Simmons G., Clapham P. R. 2000; T-cell line adaptation of human immunodeficiency virus type 1 strain SF162: effects on envelope, vpu and macrophage-tropism. J Gen Virol 81:2899–2904
    [Google Scholar]
  14. DuBridge R. B., Tang P., Hsia H. C., Leong P. M., Miller J. H., Calos M. P. 1987; Analysis of mutation in human cells by using an Epstein–Barr virus shuttle system. Mol Cell Biol 7:379–387
    [Google Scholar]
  15. Ewart G. D., Sutherland T., Gage P. W., Cox G. B. 1996; The Vpu protein of human immunodeficiency virus type 1 forms cation- selective ion channels. J Virol 70:7108–7115
    [Google Scholar]
  16. Fujita K., Omura S., Silver J. 1997; Rapid degradation of CD4 in cells expressing human immunodeficiency virus type 1 Env and Vpu is blocked by proteasome inhibitors. J Gen Virol 78:619–625
    [Google Scholar]
  17. Gendelman H. E., Orenstein J. M., Martin M. A., Ferrua C., Mitra R., Phipps T., Wahl L. A., Lane H. C., Fauci A. S., Burke D. S. 1988; Efficient isolation and propagation of human immunodeficiency virus on recombinant colony-stimulating factor 1-treated monocytes. J Exp Med 167:1428–1441 [CrossRef]
    [Google Scholar]
  18. Greenberg M. E., Bronson S., Lock M., Neumann M., Pavlakis G. N., Skowronski J. 1997; Co-localization of HIV-1 Nef with the AP-2 adaptor protein complex correlates with Nef-induced CD4 down-regulation. EMBO J 16:6964–6976 [CrossRef]
    [Google Scholar]
  19. Handley M. A., Paddock S., Dall A., Panganiban A. T. 2001; Association of Vpu-binding protein with microtubules and Vpu-dependent redistribution of HIV-1 Gag protein. Virology 291:198–207 [CrossRef]
    [Google Scholar]
  20. Hout D. R., Gomez L. M., Pacyniak E., Miller J. M., Hill M. S., Stephens E. B. 2006; A single amino acid substitution within the transmembrane domain of the human immunodeficiency virus type 1 Vpu protein renders simian-human immunodeficiency virus (SHIVKU-1bMC33) susceptible to rimantadine. Virology 348:449–461 [CrossRef]
    [Google Scholar]
  21. Hsu K., Seharaseyon J., Dong P., Bour S., Marban E. 2004; Mutual functional destruction of HIV-1 Vpu and host TASK-1 channel. Mol Cell 14:259–267 [CrossRef]
    [Google Scholar]
  22. Iida S., Fukumori T., Oshima Y., Akari H., Koyama A. H., Adachi A. 1999; Compatibility of Vpu-like activity in the four groups of primate immunodeficiency viruses. Virus Genes 18:183–187 [CrossRef]
    [Google Scholar]
  23. Kawamura M., Ishizaki T., Ishimoto A., Shioda T., Kitamura T., Adachi A. 1994; Growth ability of human immunodeficiency virus type 1 auxiliary gene mutants in primary blood macrophage cultures. J Gen Virol 75:2427–2431 [CrossRef]
    [Google Scholar]
  24. Kimura T., Nishikawa M., Ohyama A. 1994; Intracellular membrane traffic of human immunodeficiency virus type 1 envelope glycoproteins: vpu liberates Golgi-targeted gp160 from CD4-dependent retention in the endoplasmic reticulum. J Biochem (Tokyo) 115:1010–1020
    [Google Scholar]
  25. Lee B., Sharron M., Montaner L. J., Weissman D., Doms R. W. 1999; Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci U S A 96:5215–5220 [CrossRef]
    [Google Scholar]
  26. Lenburg M. E., Landau N. R. 1993; Vpu-induced degradation of CD4: requirement for specific amino acid residues in the cytoplasmic domain of CD4. J Virol 67:7238–7245
    [Google Scholar]
  27. Li Y., Kappes J. C., Conway J. A., Price R. W., Shaw G. M., Hahn B. H. 1991; Molecular characterization of human immunodeficiency virus type 1 cloned directly from uncultured human brain tissue: identification of replication-competent and -defective viral genomes. J Virol 65:3973–3985
    [Google Scholar]
  28. Lindwasser O. W., Chaudhuri R., Bonifacino J. S. 2007; Mechanisms of CD4 downregulation by the Nef and Vpu proteins of primate immunodeficiency viruses. Curr Mol Med 7:171–184 [CrossRef]
    [Google Scholar]
  29. Margottin F., Bour S. P., Durand H., Selig L., Benichou S., Richard V., Thomas D., Strebel K., Benarous R. 1998; A novel human WD protein, h- β TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Mol Cell 1:565–574 [CrossRef]
    [Google Scholar]
  30. Mori K., Ringler D. J., Desrosiers R. C. 1993; Restricted replication of simian immunodeficiency virus strain 239 in macrophages is determined by env but is not due to restricted entry. J Virol 67:2807–2814
    [Google Scholar]
  31. Neil S. J., Eastman S. W., Jouvenet N., Bieniasz P. D. 2006; HIV-1 Vpu promotes release and prevents endocytosis of nascent retrovirus particles from the plasma membrane. PLoS Pathog 2:e39 [CrossRef]
    [Google Scholar]
  32. Noble B., Abada P., Nunez-Iglesias J., Cannon P. M. 2006; Recruitment of the adaptor protein 2 complex by the human immunodeficiency virus type 2 envelope protein is necessary for high levels of virus release. J Virol 80:2924–2932 [CrossRef]
    [Google Scholar]
  33. O'Doherty U., Swiggard W. J., Malim M. H. 2000; Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. J Virol 74:10074–10080 [CrossRef]
    [Google Scholar]
  34. Pacyniak E., Gomez M. L., Gomez L. M., Mulcahy E. R., Jackson M., Hout D. R., Wisdom B. J., Stephens E. B. 2005; Identification of a region within the cytoplasmic domain of the subtype B Vpu protein of human immunodeficiency virus type 1 (HIV-1) that is responsible for retention in the Golgi complex and its absence in the Vpu protein from a subtype C HIV-1. AIDS Res Hum Retroviruses 21:379–394 [CrossRef]
    [Google Scholar]
  35. Pelchen-Matthews A., Kramer B., Marsh M. 2003; Infectious HIV-1 assembles in late endosomes in primary macrophages. J Cell Biol 162:443–455 [CrossRef]
    [Google Scholar]
  36. Peters P. J., Sullivan W. M., Duenas-Decamp M. J., Bhattacharya J., Ankghuambom C., Brown R., Luzuriaga K., Bell J., Simmonds P. other authors 2006; Non-macrophage-tropic human immunodeficiency virus type 1 R5 envelopes predominate in blood, lymph nodes, and semen: implications for transmission and pathogenesis. J Virol 80:6324–6332 [CrossRef]
    [Google Scholar]
  37. Piguet V., Chen Y. L., Mangasarian A., Foti M., Carpentier J. L., Trono D. 1998; Mechanism of Nef-induced CD4 endocytosis: Nef connects CD4 with the mu chain of adaptor complexes. EMBO J 17:2472–2481 [CrossRef]
    [Google Scholar]
  38. Piguet V., Gu F., Foti M., Demaurex N., Gruenberg J., Carpentier J. L., Trono D. 1999; Nef-induced CD4 degradation: a diacidic-based motif in Nef functions as a lysosomal targeting signal through the binding of β -COP in endosomes. Cell 97:63–73 [CrossRef]
    [Google Scholar]
  39. Sakai H., Tokunaga K., Kawamura M., Adachi A. 1995; Function of human immunodeficiency virus type 1 Vpu protein in various cell types. J Gen Virol 76:2717–2722 [CrossRef]
    [Google Scholar]
  40. Schubert U., Henklein P., Boldyreff B., Wingender E., Strebel K., Porstmann T. 1994; The human immunodeficiency virus type 1 encoded Vpu protein is phosphorylated by casein kinase-2 (CK-2) at positions Ser52 and Ser56 within a predicted α -helix-turn- α -helix-motif. J Mol Biol 236:16–25 [CrossRef]
    [Google Scholar]
  41. Schubert U., Clouse K. A., Strebel K. 1995; Augmentation of virus secretion by the human immunodeficiency virus type 1 Vpu protein is cell type independent and occurs in cultured human primary macrophages and lymphocytes. J Virol 69:7699–7711
    [Google Scholar]
  42. Schubert U., Bour S., Ferrer-Montiel A. V., Montal M., Maldarell F., Strebel K. 1996a; The two biological activities of human immunodeficiency virus type 1 Vpu protein involve two separable structural domains. J Virol 70:809–819
    [Google Scholar]
  43. Schubert U., Ferrer-Montiel A. V., Oblatt-Montal M., Henklein P., Strebel K., Montal M. 1996b; Identification of an ion channel activity of the Vpu transmembrane domain and its involvement in the regulation of virus release from HIV-1-infected cells. FEBS Lett 398:12–18 [CrossRef]
    [Google Scholar]
  44. Schubert U., Anton L. C., Bacik I., Cox J. H., Bour S., Bennink J. R., Orlowski M., Strebel K., Yewdell J. W. 1998; CD4 glycoprotein degradation induced by human immunodeficiency virus type 1 Vpu protein requires the function of proteasomes and the ubiquitin-conjugating pathway. J Virol 72:2280–2288
    [Google Scholar]
  45. Schubert U., Bour S., Willey R. L., Strebel K. 1999; Regulation of virus release by the macrophage-tropic human immunodeficiency virus type 1 AD8 isolate is redundant and can be controlled by either Vpu or Env. J Virol 73:887–896
    [Google Scholar]
  46. Schwartz S., Felber B. K., Fenyo E. M., Pavlakis G. N. 1990; Env and Vpu proteins of human immunodeficiency virus type 1 are produced from multiple bicistronic mRNAs. J Virol 64:5448–5456
    [Google Scholar]
  47. Schwartz S., Felber B. K., Pavlakis G. N. 1992; Mechanism of translation of monocistronic and multicistronic human immunodeficiency virus type 1 mRNAs. Mol Cell Biol 12:207–219
    [Google Scholar]
  48. Sharova N., Swingler C., Sharkey M., Stevenson M. 2005; Macrophages archive HIV-1 virions for dissemination in trans. EMBO J 24:2481–2489 [CrossRef]
    [Google Scholar]
  49. Simmons G., McKnight A., Takeuchi Y., Hoshino H., Clapham P. R. 1995; Cell-to-cell fusion, but not virus entry in macrophages by T-cell line tropic HIV-1 strains: a V3 loop-determined restriction. Virology 209:696–700 [CrossRef]
    [Google Scholar]
  50. Simmons G., Wilkinson D., Reeves J. D., Dittmar M. T., Beddows S., Weber J., Carnegie G., Desselberger U., Gray P. W. other authors 1996; Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry. J Virol 70:8355–8360
    [Google Scholar]
  51. Simmons G., Reeves J. D., McKnight A., Dejucq N., Hibbitts S., Power C. A., Aarons E., Schols D., Clercq E. D. other authors 1998; CXCR4 as a functional coreceptor for human immunodeficiency virus type 1 infection of primary macrophages. J Virol 72:8453–8457
    [Google Scholar]
  52. Soda Y., Shimizu N., Jinno A., Liu H. Y., Kanbe K., Kitamura T., Hoshino H. 1999; Establishment of a new system for determination of coreceptor usages of HIV based on the human glioma NP-2 cell line. Biochem Biophys Res Commun 258:313–321 [CrossRef]
    [Google Scholar]
  53. Stephens E. B., McCormick C., Pacyniak E., Griffin D., Pinson D. M., Sun F., Nothnick W., Wong S. W., Gunderson R. other authors 2002; Deletion of the vpu sequences prior to the env in a simian-human immunodeficiency virus results in enhanced Env precursor synthesis but is less pathogenic for pig-tailed macaques. Virology 293:252–261 [CrossRef]
    [Google Scholar]
  54. Swingler S., Brichacek B., Jacque J. M., Ulich C., Zhou J., Stevenson M. 2003; HIV-1 Nef intersects the macrophage CD40L signalling pathway to promote resting-cell infection. Nature 424:213–219 [CrossRef]
    [Google Scholar]
  55. Theodore T. S., Englund G., Buckler-White A., Buckler C. E., Martin M. A., Peden K. W. 1996; Construction and characterization of a stable full-length macrophage-tropic HIV type 1 molecular clone that directs the production of high titers of progeny virions. AIDS Res Hum Retroviruses 12:191–194 [CrossRef]
    [Google Scholar]
  56. Thomas E. R., Dunfee R. L., Stanton J., Bogdan D., Kunstman K., Wolinsky S. M., Gabuzda D. 2007; High frequency of defective vpu compared with tat and rev genes in brain from patients with HIV type 1-associated dementia. AIDS Res Hum Retroviruses 23:575–580 [CrossRef]
    [Google Scholar]
  57. Varthakavi V., Smith R. M., Bour S. P., Strebel K., Spearman P. 2003; Viral protein U counteracts a human host cell restriction that inhibits HIV-1 particle production. Proc Natl Acad Sci U S A 100:15154–15159 [CrossRef]
    [Google Scholar]
  58. Varthakavi V., Smith R. M., Martin K. L., Derdowski A., Lapierre L. A., Goldenring J. R., Spearman P. 2006; The pericentriolar recycling endosome plays a key role in Vpu-mediated enhancement of HIV-1 particle release. Traffic 7:298–307 [CrossRef]
    [Google Scholar]
  59. Vincent M. J., Raja N. U., Jabbar M. A. 1993; Human immunodeficiency virus type 1 Vpu protein induces degradation of chimeric envelope glycoproteins bearing the cytoplasmic and anchor domains of CD4: role of the cytoplasmic domain in Vpu-induced degradation in the endoplasmic reticulum. J Virol 67:5538–5549
    [Google Scholar]
  60. Westervelt P., Trowbridge D. B., Epstein L. G., Blumberg B. M., Li Y., Hahn B. H., Shaw G. M., Price R. W., Ratner L. 1992; Macrophage tropism determinants of human immunodeficiency virus type 1 in vivo. J Virol 66:2577–2582
    [Google Scholar]
  61. Willey R. L., Maldarelli F., Martin M. A., Strebel K. 1992; Human immunodeficiency virus type 1 Vpu protein regulates the formation of intracellular gp160–CD4 complexes. J Virol 66:226–234
    [Google Scholar]
  62. Yao X. J., Friborg J., Checroune F., Gratton S., Boisvert F., Sekaly R. P., Cohen E. A. 1995; Degradation of CD4 induced by human immunodeficiency virus type 1 Vpu protein: a predicted alpha-helix structure in the proximal cytoplasmic region of CD4 contributes to Vpu sensitivity. Virology 209:615–623 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83120-0
Loading
/content/journal/jgv/10.1099/vir.0.83120-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error