1887

Abstract

APOBEC3 cytidine deaminases hypermutate hepatitis B virus (HBV) and inhibit its replication . Whether this inhibition is due to the generation of hypermutations or to an alternative mechanism is controversial. A series of APOBEC3B (A3B) point mutants was analysed for hypermutational activity on HBV DNA and for inhibitory effects on HBV replication. Point mutations inactivating the carboxy-terminal deaminase domain abolished the hypermutational activity and reduced the inhibitory activity on HBV replication to approximately 40 %. In contrast, the point mutation H66R, inactivating the amino-terminal deaminase domain, did not affect hypermutations, but reduced the inhibition activity to 63 %, whilst the mutant C97S had no effect in either assay. Thus, only the carboxy-terminal deaminase domain of A3B catalyses cytidine deaminations leading to HBV hypermutations, but induction of hypermutations is not sufficient for full inhibition of HBV replication, for which both domains of A3B must be intact.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83149-0
2007-12-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/12/3270.html?itemId=/content/journal/jgv/10.1099/vir.0.83149-0&mimeType=html&fmt=ahah

References

  1. Bishop K. N., Holmes R. K., Sheehy A. M., Davidson N. O., Cho S. J., Malim M. H. 2004; Cytidine deamination of retroviral DNA by diverse APOBEC proteins. Curr Biol 14:1392–1396 [CrossRef]
    [Google Scholar]
  2. Bogerd H. P., Wiegand H. L., Doehle B. P., Lueders K. K., Cullen B. R. 2006a; APOBEC3A and APOBEC3B are potent inhibitors of LTR-retrotransposon function in human cells. Nucleic Acids Res 34:89–95 [CrossRef]
    [Google Scholar]
  3. Bogerd H. P., Wiegand H. L., Hulme A. E., Garcia-Perez J. L., O'Shea K. S., Moran J. V., Cullen B. R. 2006b; Cellular inhibitors of long interspersed element 1 and Alu retrotransposition. Proc Natl Acad Sci U S A 103:8780–8785 [CrossRef]
    [Google Scholar]
  4. Bogerd H. P., Wiegand H. L., Doehle B. P., Cullen B. R. 2007; The intrinsic antiretroviral factor APOBEC3B contains two enzymatically active cytidine deaminase domains. Virology 364:486–493 [CrossRef]
    [Google Scholar]
  5. Bonvin M., Achermann F., Greeve I., Stroka D., Keogh A., Inderbitzin D., Candinas D., Sommer P., Wain-Hobson S. other authors 2006; Interferon-inducible expression of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus replication. Hepatology 43:1364–1374 [CrossRef]
    [Google Scholar]
  6. Chiu Y. L., Soros V. B., Kreisberg J. F., Stopak K., Yonemoto W., Greene W. C. 2005; Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells. Nature 435:108–114 [CrossRef]
    [Google Scholar]
  7. Chiu Y.-L., Witkowska H. E., Hall S. C., Santiago M., Soros V. B., Esnault C., Heidmann T., Greene W. C. 2006; High-molecular-mass APOBEC3G complexes restrict Alu retrotransposition. Proc Natl Acad Sci USA 103:15588–15593 [CrossRef]
    [Google Scholar]
  8. Esnault C., Heidmann O., Delebecque F., Dewannieux M., Ribet D., Hance A. J., Heidmann T., Schwartz O. 2005; APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses. Nature 433:430–433 [CrossRef]
    [Google Scholar]
  9. Hache G., Liddament M. T., Harris R. S. 2005; The retroviral hypermutation specificity of APOBEC3F and APOBEC3G is governed by the C-terminal DNA cytosine deaminase domain. J Biol Chem 280:10920–10924 [CrossRef]
    [Google Scholar]
  10. Hakata Y., Landau N. R. 2006; Reversed functional organization of mouse and human APOBEC3 cytidine deaminase domains. J Biol Chem 281:36624–36631 [CrossRef]
    [Google Scholar]
  11. Harris R. S., Bishop K. N., Sheehy A. M., Craig H. M., Petersen-Mahrt S. K., Watt I. N., Neuberger M. S., Malim M. H. 2003; DNA deamination mediates innate immunity to retroviral infection. Cell 113:803–809 [CrossRef]
    [Google Scholar]
  12. Hulme A. E., Bogerd H. P., Cullen B. R., Moran J. V. 2007; Selective inhibition of Alu retrotransposition by APOBEC3G. Gene 390:199–205 [CrossRef]
    [Google Scholar]
  13. Jarmuz A., Chester A., Bayliss J., Gisbourne J., Dunham I., Scott J., Navaratnam N. 2002; An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 79:285–296 [CrossRef]
    [Google Scholar]
  14. Liddament M. T., Brown W. L., Schumacher A. J., Harris R. S. 2004; APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo. Curr Biol 14:1385–1391 [CrossRef]
    [Google Scholar]
  15. MacGinnitie A. J., Anant S., Davidson N. O. 1995; Mutagenesis of apobec-1, the catalytic subunit of the mammalian apolipoprotein B mRNA editing enzyme, reveals distinct domains that mediate cytosine nucleoside deaminase, RNA binding, and RNA editing activity. J Biol Chem 270:14768–14775 [CrossRef]
    [Google Scholar]
  16. Mangeat B., Turelli P., Caron G., Friedli M., Perrin L., Trono D. 2003; Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424:99–103 [CrossRef]
    [Google Scholar]
  17. Muckenfuss H., Hamdorf M., Held U., Perkovic M., Lower J., Cichutek K., Flory E., Schumann G. G., Munk C. 2006; APOBEC3 proteins inhibit human LINE-1 retrotransposition. J Biol Chem 281:22161–22172 [CrossRef]
    [Google Scholar]
  18. Navarro F., Bollman B., Chen H., Konig R., Yu Q., Chiles K., Landau N. R. 2005; Complementary function of the two catalytic domains of APOBEC3G. Virology 333:374–386 [CrossRef]
    [Google Scholar]
  19. Newman E. N., Holmes R. K., Craig H. M., Klein K. C., Lingappa J. R., Malim M. H., Sheehy A. M. 2005; Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity. Curr Biol 15:166–170 [CrossRef]
    [Google Scholar]
  20. Nguyen D. H., Gummuluru S., Hu J. 2007; Deamination-independent inhibition of hepatitis B virus reverse transcription by APOBEC3G. J Virol 81:4465–4472 [CrossRef]
    [Google Scholar]
  21. Opi S., Takeuchi H., Kao S., Khan M. A., Miyagi E., Goila-Gaur R., Iwatani Y., Levin J. G., Strebel K. 2006; Monomeric APOBEC3G is catalytically active and has antiviral activity. J Virol 80:4673–4682 [CrossRef]
    [Google Scholar]
  22. Rosler C., Kock J., Kann M., Malim M. H., Blum H. E., Baumert T. F., von Weizsacker F. 2005; APOBEC-mediated interference with hepadnavirus production. Hepatology 42:301–309
    [Google Scholar]
  23. Sasada A., Takaori-Kondo A., Shirakawa K., Kobayashi M., Abudu A., Hishizawa M., Imada K., Tanaka Y., Uchiyama T. 2005; APOBEC3G targets human T-cell leukemia virus type 1. Retrovirology 2:32 [CrossRef]
    [Google Scholar]
  24. Shindo K., Takaori-Kondo A., Kobayashi M., Abudu A., Fukunaga K., Uchiyama T. 2003; The enzymatic activity of CEM15/Apobec-3G is essential for the regulation of the infectivity of HIV-1 virion but not a sole determinant of its antiviral activity. J Biol Chem 278:44412–44416 [CrossRef]
    [Google Scholar]
  25. Stenglein M. D., Harris R. S. 2006; APOBEC3B and APOBEC3F inhibit L1 retrotransposition by a DNA deamination-independent mechanism. J Biol Chem 281:16837–16841 [CrossRef]
    [Google Scholar]
  26. Suspene R., Guetard D., Henry M., Sommer P., Wain-Hobson S., Vartanian J. P. 2005a; Extensive editing of both hepatitis B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in vivo . Proc Natl Acad Sci U S A 102:8321–8326 [CrossRef]
    [Google Scholar]
  27. Suspene R., Henry M., Guillot S., Wain-Hobson S., Vartanian J. P. 2005b; Recovery of APOBEC3-edited human immunodeficiency virus G→A hypermutants by differential DNA denaturation PCR. J Gen Virol 86:125–129 [CrossRef]
    [Google Scholar]
  28. Turelli P., Mangeat B., Jost S., Vianin S., Trono D. 2004; Inhibition of hepatitis B virus replication by APOBEC3G. Science 303:1829 [CrossRef]
    [Google Scholar]
  29. Wedekind J. E., Dance G. S., Sowden M. P., Smith H. C. 2003; Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business. Trends Genet 19:207–216 [CrossRef]
    [Google Scholar]
  30. Zhang H., Yang B., Pomerantz R. J., Zhang C., Arunachalam S. C., Gao L. 2003; The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424:94–98 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83149-0
Loading
/content/journal/jgv/10.1099/vir.0.83149-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error