1887

Abstract

Prions, the putative causative agents of transmissible spongiform encephalopathies, are neurotropic pathogens that spread to the central nervous system via synaptically linked neural conduits upon peripheral infection. Axons and their transport processes have been suggested as mediators of nerve-associated prion dissemination. However, the exact cellular components and molecular mechanisms underlying neural spread are unknown. This study used an established hamster scrapie model to pursue a novel experimental approach using nerve conduits containing segments devoid of neurites generated by incomplete nerve regeneration following Wallerian degeneration to probe the necessity of axons for the neural propagation of prions. For this purpose, animals were subjected to unilateral sciatic neurectomy 4 weeks before footpad inoculation with scrapie agent. The results showed that the regional nerve is the prime conduit for cerebral neuroinvasion and revealed, as evidenced by the accumulation of pathological prion protein PrP, that prions can proceed along segments of peripheral neural projections without detectable axonal structures.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83187-0
2007-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/12/3479.html?itemId=/content/journal/jgv/10.1099/vir.0.83187-0&mimeType=html&fmt=ahah

References

  1. Baldauf E., Beekes M., Diringer H. 1997; Evidence for an alternative direct route of access for the scrapie agent to the brain bypassing the spinal cord. J Gen Virol 78:1187–1197
    [Google Scholar]
  2. Bartz J. C., Kincaid A. E., Bessen R. A. 2002; Retrograde transport of transmissible mink encephalopathy within descending motor tracts. J Virol 76:5759–5768 [CrossRef]
    [Google Scholar]
  3. Bassant M. H., Baron H., Gumpel M., Cathala F., Court L. 1986; Spread of scrapie agent to the central nervous system: study of a rat model. Brain Res 383:397–401 [CrossRef]
    [Google Scholar]
  4. Beekes M., McBride P. A. 2007; The spread of prions through the body in naturally acquired transmissible spongiform encephalopathies. FEBS J 274:588–605 [CrossRef]
    [Google Scholar]
  5. Beekes M., Baldauf E., Diringer H. 1996; Sequential appearance and accumulation of pathognomonic markers in the central nervous system of hamsters orally infected with scrapie. J Gen Virol 77:1925–1934 [CrossRef]
    [Google Scholar]
  6. Beekes M., McBride P. A., Baldauf E. 1998; Cerebral targeting indicates vagal spread of infection in hamsters fed with scrapie. J Gen Virol 79:601–607
    [Google Scholar]
  7. Bolton D. C., Rudelli R. D., Currie J. R., Bendheim P. E. 1991; Copurification of Sp33–37 and scrapie agent from hamster brain prior to detectable histopathology and clinical disease. J Gen Virol 72:2905–2913 [CrossRef]
    [Google Scholar]
  8. Borchelt D. R., Koliatsos V. E., Guarnieri M., Pardo C. A., Sisodia S. S., Price D. L. 1994; Rapid anterograde axonal transport of the cellular prion glycoprotein in the peripheral and central nervous system. J Biol Chem 269:14711–14714
    [Google Scholar]
  9. Brown P., Cervenakova L. 2005; A prion lexicon (out of control). Lancet 365:122 [CrossRef]
    [Google Scholar]
  10. Büngner O. V. 1891; Über die Degenerations- und Regenerationsvorgänge am Nerven nach Verletzungen. Beitr Pathol Anat 10:321–387
    [Google Scholar]
  11. Burnett M. G., Zager E. L. 2004; Pathophysiology of peripheral nerve injury: a brief review. Neurosurg Focus 16:E1
    [Google Scholar]
  12. Butowt R., Abdelraheim S., Brown D. R., von Bartheld C. S. 2006; Anterograde axonal transport of the exogenous cellular isoform of prion protein in the chick visual system. Mol Cell Neurosci 31:97–108 [CrossRef]
    [Google Scholar]
  13. Carbone K. M., Duchala C. S., Griffin J. W., Kincaid A. L., Narayan O. 1987; Pathogenesis of Borna disease in rats: evidence that intra-axonal spread is the major route for virus dissemination and the determinant for disease incubation. J Virol 61:3431–3440
    [Google Scholar]
  14. Février B., Vilette D., Laude H., Rapaso G. 2005; Exosomes: a bubble ride for prions?. Traffic 6:10–17 [CrossRef]
    [Google Scholar]
  15. Fields R. D., Stevens-Graham B. 2002; New insights into neuron–glia communication. Science 298:556–562 [CrossRef]
    [Google Scholar]
  16. Follet J., Lemaire-Vieille C., Blanquet-Grossard F., Podevin-Dimster V., Lehmann S., Chauvin J. P., Decavel J. P., Varea R., Grassi J. other authors 2002; PrP expression and replication by Schwann cells: implications in prion spreading. J Virol 76:2434–2439 [CrossRef]
    [Google Scholar]
  17. Fraser H. 1982; Neuronal spread of scrapie agent and targeting of lesions within the retino-tectal pathway. Nature 295:149–150 [CrossRef]
    [Google Scholar]
  18. Gabizon R., McKinley M. P., Prusiner S. B. 1987; Purified prion proteins and scrapie infectivity copartition into liposomes. Proc Natl Acad Sci U S A 84:4017–4021 [CrossRef]
    [Google Scholar]
  19. Glatzel M., Aguzzi A. 2000a; PrPC expression in the peripheral nervous system is a determinant of prion neuroinvasion. J Gen Virol 81:2813–2821
    [Google Scholar]
  20. Glatzel M., Aguzzi A. 2000b; Peripheral pathogenesis of prion diseases. Microbes Infect 2:613–619 [CrossRef]
    [Google Scholar]
  21. Groschup M. H., Beekes M., McBride P. A., Hardt M., Hainfellner J. A., Budka H. 1999; Deposition of disease-associated prion protein involves the peripheral nervous system in experimental scrapie. Acta Neuropathol (Berl) 98:453–457 [CrossRef]
    [Google Scholar]
  22. Hafezparast M., Brandner S., Linehan J., Martin J. E., Collinge J., Fisher E. M. 2005; Prion disease incubation time is not affected in mice heterozygous for a dynein mutation. Biochem Biophys Res Commun 326:18–22
    [Google Scholar]
  23. Heikenwälder M., Zeller N., Seeger H., Prinz M., Klöhn P.-C., Schwarz P., Ruddle N. H., Weissmann C., Aguzzi A. 2005; Chronic lymphocytic inflammation specifies the organ tropism of prions. Science 307:1107–1110 [CrossRef]
    [Google Scholar]
  24. Herzog C., Sales N., Etchegaray N., Charbonnier A., Freire S., Dormono D., Deslys J. P., Lasmezas C. I. 2004; Tissue distribution of bovine spongiform encephalopathy agent in primates after intravenous or oral infection. Lancet 363:422–428 [CrossRef]
    [Google Scholar]
  25. Ide C. 1996; Peripheral nerve regeneration. Neurosci Res 25:101–121
    [Google Scholar]
  26. Ironside J. W., McCardle L., Horsburgh A., Lim Z., Head M. W. 2002; Pathological diagnosis of variant Creutzfeldt–Jakob disease. APMIS 110:79–87 [CrossRef]
    [Google Scholar]
  27. Jendroska K., Heinzel F. P., Torchia M., Stowring L., Kretzschmar H. A., Kon A., Stern A., Prusiner S. B., DeArmond S. J. 1991; Proteinase-resistant prion protein accumulation in Syrian hamster brain correlates with regional pathology and scrapie infectivity. Neurology 41:1482–1490 [CrossRef]
    [Google Scholar]
  28. Kascsak R. J., Rubenstein R., Merz P. A., Tonna-DeMasi M., Fersko R., Carp R. I., Wisniewski H. M., Diringer H. 1987; Mouse polyclonal and monoclonal antibody to scrapie-associated fibril proteins. J Virol 61:3688–3693
    [Google Scholar]
  29. Kimberlin R. H., Hall S. M., Walker C. A. 1983; Pathogenesis of mouse scrapie. Evidence for direct neural spread of infection to the CNS after injection of sciatic nerve. J Neurol Sci 61:315–325 [CrossRef]
    [Google Scholar]
  30. Kovacs G. G., Preusser M., Strohschneider M., Budka H. 2005; Subcellular localization of disease-associated prion protein in the human brain. Am J Pathol 166:287–294 [CrossRef]
    [Google Scholar]
  31. Kratzel C., Mai J., Madela K., Beekes M., Krüger D. 2007a; Propagation of scrapie in peripheral nerves after footpad infection in normal and neurotoxin exposed hamsters. Vet Res 38:127–139 [CrossRef]
    [Google Scholar]
  32. Kratzel C., Krüger D., Beekes M. 2007b; Relevance of the regional lymph node in scrapie pathogenesis after peripheral infection of hamsters. BMC Vet Res 3:22 [Epub ahead of print] [CrossRef]
    [Google Scholar]
  33. Künzi V., Glatzel M., Nakano M. Y., Greber U. F., Van Leuven F., Aguzzi A. 2002; Unhampered prion neuroinvasion despite impaired fast axonal transport in transgenic mice overexpressing four-repeat tau. J Neurosci 22:7471–7477
    [Google Scholar]
  34. McBride P. A., Schulz-Schaeffer W. J., Donaldson M., Bruce M., Diringer H., Kretzschmar H. A., Beekes M. 2001; Early spread of scrapie from the gastrointestinal tract to the central nervous system involves autonomic fibers of the splanchnic and vagus nerves. J Virol 75:9320–9327 [CrossRef]
    [Google Scholar]
  35. McKinley M. P., Bolton D. C., Prusiner S. B. 1983; A protease-resistant protein is a structural component of the scrapie prion. Cell 35:57–62 [CrossRef]
    [Google Scholar]
  36. Mims C. A., White D. O. 1984 Viral Pathogenesis and Immunology Oxford, UK: Blackwell Scientific;
    [Google Scholar]
  37. Prusiner S. B. 1991; Molecular biology of prion diseases. Science 252:1515–1522 [CrossRef]
    [Google Scholar]
  38. Rubenstein R., Merz P. A., Kascsak R. J., Scalici C. L., Papini M. C., Carp R. I., Kimberlin R. H. 1991; Scrapie-infected spleens: analysis of infectivity, scrapie-associated fibrils, and protease-resistant proteins. J Infect Dis 164:29–35 [CrossRef]
    [Google Scholar]
  39. Schulz-Schaeffer W. J., Tschoke S., Kranefuss N., Drose W., Hause-Reitner D., Giese A., Groschup M. H., Kretzschmar H. A. 2000; The paraffin-embedded tissue blot detects PrPSc early in the incubation time in prion diseases. Am J Pathol 156:51–56 [CrossRef]
    [Google Scholar]
  40. Thomzig A., Kratzel C., Lenz G., Krüger D., Beekes M. 2003; Widespread PrPSc accumulation in muscles of hamsters orally infected with scrapie. EMBO Rep 4:530–533 [CrossRef]
    [Google Scholar]
  41. Wadsworth J. D., Joiner S., Hill A. F., Campbell T. A., Desbruslais M., Luthert P. J., Collinge J. 2001; Tissue distribution of protease resistant prion protein in variant Creutzfeldt–Jakob disease using a highly sensitive immunoblotting assay. Lancet 358:171–180 [CrossRef]
    [Google Scholar]
  42. Waller A. 1850; Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibers. Philos Trans R Soc Lond 140:423–429 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83187-0
Loading
/content/journal/jgv/10.1099/vir.0.83187-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error