1887

Abstract

Eight bovine papillomavirus (BPV) types, BPV-1–8, have been classified, based on genome nucleotide sequence similarities, in the genera (BPV-1 and -2), (BPV-5 and -8), (BPV-3, -4 and -6) and an unassigned genus (BPV-7). We report here the complete genome sequence of two new BPV types isolated from separate epithelial squamous papilloma lesions on cattle teats. The genomes are 7303 and 7399 bp in length, respectively, and both have genetic organization and consensus motifs typical of papillomaviruses. A neighbour-joining phylogenetic tree revealed that both viruses cluster with BPV-3, -4 and -6. Nucleotide sequence identities of the BPV L1 major capsid protein of these two new BPVs with BPV-3, their closest relative, are 74.2 and 71.2 %, respectively. These results suggest that both viruses are new BPV types in the genus , and they are designated BPV-9 and BPV-10.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83334-0
2008-01-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/1/158.html?itemId=/content/journal/jgv/10.1099/vir.0.83334-0&mimeType=html&fmt=ahah

References

  1. Antonsson A., Hansson B. G. 2002; Healthy skin of many animal species harbors papillomaviruses which are closely related to their human counterparts. J Virol 76:12537–12542 [CrossRef]
    [Google Scholar]
  2. Ashrafi G. H., Tsirimonaki E., Marchetti B., O'Brien P. M., Sibbet G. J., Andrew L., Campo M. S. 2002; Down-regulation of MHC class I by bovine papillomavirus E5 oncoproteins. Oncogene 21:248–259 [CrossRef]
    [Google Scholar]
  3. Bloch N., Sutton R. H., Spradbrow P. B. 1994; Bovine cutaneous papillomas associated with bovine papillomavirus type 5. Arch Virol 138:373–377 [CrossRef]
    [Google Scholar]
  4. Bryan J. T., Brown D. R. 2000; Association of the human papillomavirus type 11 E1^E4 protein with cornified cell envelopes derived from infected genital epithelium. Virology 277:262–269 [CrossRef]
    [Google Scholar]
  5. Campo M. S. 2002; Animal models of papillomavirus pathogenesis. Virus Res 89:249–261 [CrossRef]
    [Google Scholar]
  6. Chan H. M., Smith L., La Thangue N. B. 2001; Role of LXCXE motif-dependent interactions in the activity of the retinoblastoma protein. Oncogene 20:6152–6163 [CrossRef]
    [Google Scholar]
  7. Dahiya A., Gavin M. R., Luo R. X., Dean D. C. 2000; Role of the LXCXE binding site in Rb function. Mol Cell Biol 20:6799–6805 [CrossRef]
    [Google Scholar]
  8. Davy C. E., Jackson D. J., Raj K., Peh W. L., Southern S. A., Das P., Sorathia R., Laskey P., Middleton K. other authors 2005; Human papillomavirus type 16 E1^E4-induced G2 arrest is associated with cytoplasmic retention of active Cdk1/cyclin B1 complexes. J Virol 79:3998–4011 [CrossRef]
    [Google Scholar]
  9. de Villiers E. M., Fauquet C., Broker T. R., Bernard H. U., zur Hausen H. 2004; Classification of papillomaviruses. Virology 324:17–27 [CrossRef]
    [Google Scholar]
  10. Delius H., Van Ranst M. A., Jenson A. B., zur Hausen H., Sundberg J. P. 1994; Canine oral papillomavirus genomic sequence: a unique 1.5-kb intervening sequence between the E2 and L2 open reading frames. Virology 204:447–452 [CrossRef]
    [Google Scholar]
  11. Dick F. A., Dyson N. J. 2002; Three regions of the pRB pocket domain affect its inactivation by human papillomavirus E7 proteins. J Virol 76:6224–6234 [CrossRef]
    [Google Scholar]
  12. Doorbar J., Parton A., Hartley K., Banks L., Crook T., Stanley M., Crawford L. 1990; Detection of novel splicing patterns in a HPV 16-containing keratinocyte cell line. Virology 178:254–262 [CrossRef]
    [Google Scholar]
  13. Doorbar J., Foo C., Coleman N., Medcalf L., Hartley O., Prospero T., Napthine S., Sterling J., Winter G., Griffin H. 1997; Characterization of events during the late stages of HPV16 infection in vivo using high-affinity synthetic Fabs to E4. Virology 238:40–52 [CrossRef]
    [Google Scholar]
  14. Forslund O., Antonsson A., Nordin P., Stenquist B., Hansson B. G. 1999; A broad range of human papillomavirus types detected with a general PCR method suitable for analysis of cutaneous tumours and normal skin. J Gen Virol 80:2437–2443
    [Google Scholar]
  15. Groff D. E., Lancaster W. D. 1985; Molecular cloning and nucleotide sequence of deer papillomavirus. J Virol 56:85–91
    [Google Scholar]
  16. Jackson M. E., O'Brien V., Morgan I. M., Grindlay G. J., Campo M. S. 1996; Bovine papillomavirus type 4: neoplastic cell transformation and control of infection by vaccine. Int J Oncol 9:1189–1199
    [Google Scholar]
  17. Jarrett W. F. H., Campo M. S., O'Neil B. W., Laird H. M., Coggins L. W. 1984; A novel bovine papillomavirus (BPV-6) causing true epithelial papillomas of the mammary gland skin: a member of a proposed new BPV subgroup. Virology 136:255–264 [CrossRef]
    [Google Scholar]
  18. Maeda Y., Shibahara T., Wada Y., Kadota K., Kanno T., Uchida I., Hatama S. 2007; An outbreak of teat papillomatosis in cattle caused by bovine papilloma virus (BPV) type 6 and unclassified BPVs. Vet Microbiol 121:242–248 [CrossRef]
    [Google Scholar]
  19. Marchetti B., Ashrafi G. H., Tsirimonaki E., O'Brien P. M., Campo M. S. 2002; The bovine papillomavirus oncoprotein E5 retains MHC class I molecules in the Golgi apparatus and prevents their transport to the cell surface. Oncogene 21:7808–7816 [CrossRef]
    [Google Scholar]
  20. Marchetti B., Ashrafi G. H., Dornan E. S., Araibi E. H., Ellis S. A., Campo M. S. 2006; The E5 protein of BPV-4 interacts with the heavy chain of MHC class I and irreversibly retains the MHC complex in the Golgi apparatus. Oncogene 25:2254–2263 [CrossRef]
    [Google Scholar]
  21. Morgan I. M., Campo M. S. 2000; Recent developments in bovine papillomaviruses. Papillomavirus Rep 11:127–132
    [Google Scholar]
  22. Nakahara T., Nishimura A., Tanaka M., Ueno T., Ishimoto A., Sakai H. 2002; Modulation of the cell division cycle by human papillomavirus type 18 E4. J Virol 76:10914–10920 [CrossRef]
    [Google Scholar]
  23. Narechania A., Terai M., Chen Z., DeSalle R., Burk R. D. 2004; Lack of the canonical pRB-binding domain in the E7 ORF of artiodactyl papillomaviruses is associated with the development of fibropapillomas. J Gen Virol 85:1243–1250 [CrossRef]
    [Google Scholar]
  24. Ogawa T., Tomita Y., Okada M., Shinozaki K., Kubonoya H., Kaiho I., Shirasawa H. 2004; Broad-spectrum detection of papillomaviruses in bovine teat papillomas and healthy teat skin. J Gen Virol 85:2191–2197 [CrossRef]
    [Google Scholar]
  25. Ogawa T., Tomita Y., Okada M., Shirasawa H. 2007; Complete genome and phylogenetic position of bovine papillomavirus type 7. J Gen Virol 88:1934–1938 [CrossRef]
    [Google Scholar]
  26. Raj K., Berguerand S., Southern S., Doorbar J., Beard P. 2004; E1 empty set E4 protein of human papillomavirus type 16 associates with mitochondria. J Virol 78:7199–7207 [CrossRef]
    [Google Scholar]
  27. Rector A., Van Doorslaer K., Bertelsen M., Barker I. K., Olberg R. A., Lemey P., Sundberg J. P., Van Ranst M. 2005; Isolation and cloning of the raccoon ( Procyon lotor ) papillomavirus type 1 by using degenerate papillomavirus-specific primers. J Gen Virol 86:2029–2033 [CrossRef]
    [Google Scholar]
  28. Roberts S., Hillman M. L., Knight G. L., Gallimore P. H. 2003; The ND10 component promyelocytic leukemia protein relocates to human papillomavirus type 1 E4 intranuclear inclusion bodies in cultured keratinocytes and in warts. J Virol 77:673–684 [CrossRef]
    [Google Scholar]
  29. Schiller J. T., Vass W. C., Vousden K. H., Lowy D. R. 1986; E5 open reading frame of bovine papillomavirus type 1 encodes a transforming gene. J Virol 57:1–6
    [Google Scholar]
  30. Tachezy R., Duson G., Rector A., Jenson A. B., Sundberg J. P., Van Ranst M. 2002; Cloning and genomic characterization of Felis domesticus papillomavirus type 1. Virology 301:313–321 [CrossRef]
    [Google Scholar]
  31. Thompson E. A., Neel J. V. 1997; Allelic disequilibrium and allele frequency distribution as a function of social and demographic history. Am J Hum Genet 60:197–204
    [Google Scholar]
  32. Titolo S., Pelletier A., Sauvé F., Brault K., Wardrop E., White P. W., Amin A., Cordingley M. G., Archambault J. 1999; Role of the ATP-binding domain of the human papillomavirus type 11 E1 helicase in E2-dependent binding to the origin. J Virol 73:5282–5293
    [Google Scholar]
  33. Tomita Y., Literak I., Ogawa T., Jin Z., Shirasawa H. 2007; Complete genomes and phylogenetic positions of bovine papillomavirus type 8 and a variant type from a European bison. Virus Genes 35:243–249 [CrossRef]
    [Google Scholar]
  34. Wang Q., Griffin H., Southern S., Jackson D., Martin A., McIntosh P., Davy C., Masterson P. J., Walker P. A. other authors 2004; Functional analysis of the human papillomavirus type 16 E1^E4 protein provides a mechanism for in vivo and in vitro keratin filament reorganization. J Virol 78:821–833 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83334-0
Loading
/content/journal/jgv/10.1099/vir.0.83334-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error