1887

Abstract

The genomic coding sequences, apart from the inverted terminal repeats and cross-links, have been determined for two African swine fever virus (ASFV) isolates from the same virus genotype, a non-pathogenic isolate from Portugal, OURT88/3, and a highly pathogenic isolate from West Africa, Benin 97/1. These genome sequences were annotated and compared with that of a tissue culture-adapted isolate, BA71V. The genomes range in length between 170 and 182 kbp and encode between 151 and 157 open reading frames (ORFs). Compared to the Benin 97/1 isolate, the OURT88/3 and BA71V isolates have deletions of 8–10 kbp that encode six copies of the multigene family (MGF) 360 and either one MGF 505/530 copy in the BA71V or two copies in the OURT88/3 isolate. The BA71V isolate has a deletion, close to the right end of the genome, of 3 kbp compared with the other isolates. The five ORFs in this region include an additional copy of an ORF similar to that encoding the p22 virus structural protein. The OURT88/3 isolate has interruptions in ORFs that encode a CD2-like and a C-type lectin protein. Variation between the genomes is observed in the number of copies of five different MGFs. The 109 non-duplicated ORFs conserved in the three genomes encode proteins involved in virus replication, virus assembly and modulation of the host's defences. These results provide information concerning the genetic variability of African swine fever virus isolates that differ in pathogenicity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83343-0
2008-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/2/397.html?itemId=/content/journal/jgv/10.1099/vir.0.83343-0&mimeType=html&fmt=ahah

References

  1. Afonso C. L., Neilan J. G., Kutish G. F., Rock D. L. 1996; An African swine fever virus Bcl-2 homolog, 5-HL, suppresses apoptotic cell death. J Virol 70:4858–4863
    [Google Scholar]
  2. Afonso C. L., Piccone M. E., Zaffuto K. M., Neilan J., Kutish G. F., Lu Z., Balinsky C. A., Gibb T. R., Bean T. J. other authors 2004; African swine fever virus multigene family 360 and 530 genes affect host interferon response. J Virol 78:1858–1864 [CrossRef]
    [Google Scholar]
  3. Aguero M., Blasco R., Wilkinson P., Viñuela E. 1990; Analysis of naturally-occurring deletion variants of African swine fever virus - multigene family-110 is not essential for infectivity or virulence in pigs. Virology 176:195–204 [CrossRef]
    [Google Scholar]
  4. Alejo A., Yanez R. J., Rodriguez J. M., Viñuela E., Salas M. L. 1997; African swine fever virus trans -prenyltransferase. J Biol Chem 272:9417–9423 [CrossRef]
    [Google Scholar]
  5. Almazan F., Rodriguez J. M., Andres G., Perez R., Viñuela E., Rodriguez J. F. 1992; Transcriptional analysis of multigene family 110 of African swine fever virus. J Virol 66:6655–6667
    [Google Scholar]
  6. Almendral J. M., Almazan F., Blasco R., Vinuela E. 1990; Multigene families in African swine fever virus -Family-110. J Virol 64:2064–2072
    [Google Scholar]
  7. Baylis S. A., Banham A. H., Vydelingum S., Dixon L. K., Smith G. L. 1993a; African swine fever virus encodes a serine protein-kinase which is packaged into virions. J Virol 67:4549–4556
    [Google Scholar]
  8. Boinas F. S., Hutchings G. H., Dixon L. K., Wilkinson P. J. 2004; Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. J Gen Virol 85:2177–2187 [CrossRef]
    [Google Scholar]
  9. Borca M. V., Kutish G. F., Afonso C. L., Irusta P., Carrillo C., Brun A., Sussman M., Rock D. L. 1994; An African swine fever virus gene with similarity to the T- lymphocyte surface-antigen Cd2 mediates hemadsorption. Virology 199:463–468 [CrossRef]
    [Google Scholar]
  10. Borca M. V., Carrillo C., Zsak L., Laegreid W. W., Kutish G. F., Neilan J. G., Burrage T. G., Rock D. L. 1998; Deletion of a CD2-like gene, 8-DR, from African swine fever virus affects viral infection in domestic swine. J Virol 72:2881–2889
    [Google Scholar]
  11. Brodie R., Roper R. L., Upton C. 2004a; JDotter: a Java interface to multiple dotplots generated by dotter. Bioinformatics 20:279–281 [CrossRef]
    [Google Scholar]
  12. Brodie R., Smith A. J., Roper R. L., Tcherepanov V., Upton C. 2004b; Base-By-Base: single nucleotide-level analysis of whole viral genome alignments. BMC Bioinformatics 5:96 [CrossRef]
    [Google Scholar]
  13. Burrage T. G., Lu Z., Neilan J. G., Rock D. L., Zsak L. 2004; African swine fever virus multigene family 360 genes affect virus replication and generalization of infection in Ornithodoros porcinus ticks. J Virol 78:2445–2453 [CrossRef]
    [Google Scholar]
  14. Bustos M. J., Nogal M. L., Revilla Y., Carrascosa A. L. 2002; Plaque assay for African swine fever virus on swine macrophages. Arch Virol 147:1453–1459 [CrossRef]
    [Google Scholar]
  15. Camacho A., Viñuela E. 1991; Protein P22 of African swine fever virus - an early structural protein that is incorporated into the membrane of infected cells. Virology 181:251–257 [CrossRef]
    [Google Scholar]
  16. Cartwright J. L., Safrany S. T., Dixon L. K., Darzynkiewicz E., Stepinski J., Burke R., McLennan A. G. 2002; The g5R (D250) gene of African swine fever virus encodes a nudix hydrolase that preferentially degrades diphosphoinositol polyphosphates. J Virol 76:1415–1421 [CrossRef]
    [Google Scholar]
  17. Chacon M. R., Almazan F., Nogal M. L., Viñuela E., Rodriguez J. F. 1995; The African swine fever virus IAP homolog is a late structural polypeptide. Virology 214:670–674 [CrossRef]
    [Google Scholar]
  18. Cobbold C., Windsor M., Wileman T. 2001; A virally encoded chaperone specialized for folding of the major capsid protein of African swine fever virus. J Virol 75:7221–7229 [CrossRef]
    [Google Scholar]
  19. de la Vega I., Viñuela E., Blasco R. 1990; Genetic-variation and multigene families in African swine fever virus. Virology 179:234–246 [CrossRef]
    [Google Scholar]
  20. Dixon L. K., Twigg S. R. F., Baylis S. A., Vydelingum S., Bristow C., Hammond J. M., Smith G. L. 1994; Nucleotide-sequence of a 55 kbp region from the right end of the genome of a pathogenic African swine fever virus isolate (Malawi LIL20/1). J Gen Virol 75:1655–1684 [CrossRef]
    [Google Scholar]
  21. Dixon L. K., Escribano J. M., Martins C., Rock D. L., Salas M. L., Wilkinson P. J. 2005; Asfarviridae . In Virus Taxonomy, Eighth Report of the ICTV pp 135–143Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball. London: Elsevier/Academic Press;
    [Google Scholar]
  22. Duarte M. M. D. 2000; Bases moleculares da virulence e hemadsorbcao nos isolados Nacionas Lisboa 60 e Lisboa 68 do Virus Da Peste Suina Africana. PhD thesis Universidade Nova de Lisboa;
  23. Galindo I., Almazan F., Bustos M. J., Viñuela E., Carrascosa A. L. 2000; African swine fever virus EP153R open reading frame encodes a glycoprotein involved in the hemadsorption of infected cells. Virology 266:340–351 [CrossRef]
    [Google Scholar]
  24. Gonzalez A., Talavera A., Almendral J. M., Viñuela E. 1986; Hairpin loop structure of African swine fever virus-DNA. Nucleic Acids Res 14:6835–6844 [CrossRef]
    [Google Scholar]
  25. Haresnape J. M., Wilkinson P. J. 1989; A study of African swine fever virus-infected ticks ( Ornithodoros moubata ) collected from three villages in the ASF enzootic area of Malawi following an outbreak of the disease in domestic pigs. Epidemiol Infect 102:507–522 [CrossRef]
    [Google Scholar]
  26. Hingamp P. M., Arnold J. E., Mayer R. J., Dixon L. K. 1992; A ubiquitin conjugating enzyme encoded by African swine fever virus. EMBO J 11:361–366
    [Google Scholar]
  27. Hurtado C., Granja A. G., Bustos M. J., Nogal M. L., de Buitrago G. G., de Yebenes V. G., Salas M. L., Revilla Y., Carrascosa A. L. 2004; The C-type lectin homologue gene (EP153R) of African swine fever virus inhibits apoptosis both in virus infection and in heterologous expression. Virology 326:160–170 [CrossRef]
    [Google Scholar]
  28. Kay-Jackson P. C., Goatley L. C., Cox L., Miskin J. E., Parkhouse R. M. E., Wienands J., Dixon L. K. 2004; The CD2v protein of African swine fever virus interacts with the actin-binding adaptor protein SH3P7. J Gen Virol 85:119–130 [CrossRef]
    [Google Scholar]
  29. Lubisi B. A., Bastos A. D., Dwarka R. M., Vosloo W. 2007; Intra-genotypic resolution of African swine fever viruses from an East African domestic pig cycle: a combined p72-CVR approach. Virus Genes 35:729–735 [CrossRef]
    [Google Scholar]
  30. Miskin J. E., Abrams C. C., Goatley L. C., Dixon L. K. 1998; A viral mechanism for inhibition of the cellular phosphatase calcineurin. Science 281:562–565 [CrossRef]
    [Google Scholar]
  31. Neilan J. G., Zsak L., Lu Z., Kutish G. F., Afonso C. L., Rock D. L. 2002; Novel swine virulence determinant in the left variable region of the African swine fever virus genome. J Virol 76:3095–3104 [CrossRef]
    [Google Scholar]
  32. Netherton C. L., Parsley J. C., Wileman T. 2004; African swine fever virus inhibits induction of the stress-induced proapoptotic transcription factor CHOP/GADD153. J Virol 78:10825–10828 [CrossRef]
    [Google Scholar]
  33. Nix R. J., Gallardo C., Hutchings G., Blanco E., Dixon L. K. 2006; Molecular epidemiology of African swine fever virus studied by analysis of four variable genome regions. Arch Virol 151:2475–2494 [CrossRef]
    [Google Scholar]
  34. Nogal M. L., de Buitrago G. G., Rodriguez C., Cubelos B., Carrascosa A. L., Salas M. L., Revilla Y. 2001; African swine fever virus IAP homologue inhibits caspase activation and promotes cell survival in mammalian cells. J Virol 75:2535–2543 [CrossRef]
    [Google Scholar]
  35. Oura C. A. L., Denyer M. S., Takamatsu H., Parkhouse R. M. E. 2005; In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. J Gen Virol 86:2445–2450 [CrossRef]
    [Google Scholar]
  36. Pan I. C. 1992; African swine fever virus - generation of subpopulations with altered immunogenicity and virulence following passage in cell-cultures. J Vet Med Sci 54:43–52 [CrossRef]
    [Google Scholar]
  37. Pires S., Ribeiro G., Costa J. V. 1997; Sequence and organization of the left multigene family 110 region of the Vero-adapted L60V strain of African swine fever virus. Virus Genes 15:271–274 [CrossRef]
    [Google Scholar]
  38. Powell P. P., Dixon L. K., Parkhouse R. M. E. 1996; An I κ B homolog encoded by African swine fever virus provides a novel mechanism for downregulation of proinflammatory cytokine responses in host macrophages. J Virol 70:8527–8533
    [Google Scholar]
  39. Rivera J., Hernáez B., Alcázar A., Escribano J., Dixon L. K., Alonso C. 2007; The MyD116 African swine fever virus homologue interacts with the catalytic subunit of protein phosphatase 1 and activates its phosphatase activity. J Virol 81:2923–2929 [CrossRef]
    [Google Scholar]
  40. Rodriguez J. M., Yanez R. J., Almazan F., Viñuela E., Rodriguez J. F. 1993; African swine fever virus encodes a CD2 homolog responsible for the adhesion of erythrocytes to infected cells. J Virol 67:5312–5320
    [Google Scholar]
  41. Salas M. 1999; African swine fever virus ( Asfarviridae ). In Encyclopedia of Virology . , 2nd edn. pp 30–38Edited by Allan R. G. W. , Granoff L. A. London: Academic press;
  42. Staden R. 1996; The Staden sequence analysis package. Mol Biotechnol 5:233–241 [CrossRef]
    [Google Scholar]
  43. Syed A., Upton C. 2006; Java GUI for InterProScan (JIPS): a tool to help process multiple InterProScans and perform ortholog analysis. BMC Bioinformatics 7:462 [CrossRef]
    [Google Scholar]
  44. Tcherepanov V., Ehlers A., Upton C. 2006; Genome Annotation Transfer Utility (GATU): rapid annotation of viral genomes using a closely related reference genome. BMC Genomics 7:150 [CrossRef]
    [Google Scholar]
  45. Tulman E. R., Rock D. L. 2001; Novel virulence and host range genes of African swine fever virus. Curr Opin Microbiol 4:456–461 [CrossRef]
    [Google Scholar]
  46. Upton C., Hogg D., Perrin D., Boone M., Harris N. L. 2000; Viral genome organizer: a system for analyzing complete viral genomes. Virus Res 70:55–64 [CrossRef]
    [Google Scholar]
  47. Upton C., Slack S., Hunter A. L., Ehlers A., Roper R. L. 2003; Poxvirus orthologous clusters: toward defining the minimum essential poxvirus genome. J Virol 77:7590–7600 [CrossRef]
    [Google Scholar]
  48. Yanez R. J., Rodriguez J. M., Nogal M. L., Yuste L., Enriquez C., Rodriguez J. F., Viñuela E. 1995; Analysis of the complete nucleotide-sequence of African swine fever virus. Virology 208:249–278 [CrossRef]
    [Google Scholar]
  49. Yozawa T., Kutish G. F., Afonso C. L., Lu Z., Rock D. L. 1994; Two novel multigene families, 530 and 300, in the terminal variable regions of African swine fever virus genome. Virology 202:997–1002 [CrossRef]
    [Google Scholar]
  50. Zsak L., Lu Z., Burrage T. G., Neilan J. G., Kutish G. F., Moore D. M., Rock D. L. 2001; African swine fever virus multigene family 360 and 530 genes are novel macrophage host range determinants. J Virol 75:3066–3076 [CrossRef]
    [Google Scholar]
  51. Zsak L., Borca M. V., Risatti G. R., Zsak A., French R. A., Kutish G. F., Neilan J. G., Callahan J. D., Nelson W. M., Rock D. L. 2005; Preclinical diagnosis of African swine fever in contact-exposed swine by a real-time PCR assay. J Clin Microbiol 43:112–119 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83343-0
Loading
/content/journal/jgv/10.1099/vir.0.83343-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error