1887

Abstract

Entry of dengue virus 2 (DENV-2) into mosquito C6/36 cells was analysed using biochemical and molecular inhibitors, together with confocal and electron microscopy observations. Treatment with monodansylcadaverine, chlorpromazine, sucrose and ammonium chloride inhibited DENV-2 virus yield and protein expression, whereas nystatin, a blocker of caveolae-mediated endocytosis, did not have any effect. Using confocal microscopy, co-localization of DENV-2 E glycoprotein and the marker protein transferrin was observed at the periphery of the cytoplasm. To support the requirement of clathrin function for DENV-2 entry, overexpression of a dominant-negative mutant of Eps15 in C6/36 cells was shown to impair virus entry. The disruption of actin microfilaments by cytochalasin D also significantly affected DENV-2 replication. In contrast, microtubule disruption by colchicine treatment did not impair DENV-2 infectivity, suggesting that DENV-2 does not require transport from early to late endosomes for successful infection of mosquito cells. Furthermore, using transmission electron microscopy, DENV-2 particles of approximately 44–52 nm were found attached within electron-dense invaginations of the plasma membrane and in coated vesicles that resembled those of clathrin-coated pits and vesicles, respectively. Together, these results demonstrate for the first time that DENV-2 enters insect cells by receptor-mediated, clathrin-dependent endocytosis, requiring traffic through an acidic pH compartment for subsequent uncoating and completion of a productive infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83357-0
2008-02-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/2/474.html?itemId=/content/journal/jgv/10.1099/vir.0.83357-0&mimeType=html&fmt=ahah

References

  1. Anderson H. A., Chen Y., Norkin L. C. 1996; Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Mol Biol Cell 7:1825–1834 [CrossRef]
    [Google Scholar]
  2. Benmerah A., Lamaze C., Bègue B., Schmid S. L., Dautry-Varsat A., Cerf-Bensussan N. 1998; AP-2/Eps 15 interaction is required for receptor-mediated endocytosis. J Cell Biol 140:1055–1062 [CrossRef]
    [Google Scholar]
  3. Benmerah A., Bayrou M., Cerf-Bensussan N., Dautry-Varsat A. 1999; Inhibition of clathrin-coated pit assembly by an Eps15 mutant. J Cell Sci 112:1303–1311
    [Google Scholar]
  4. Bielefeldt-Ohmann H., Meyer M., Fitzpatrick D. R., Mackenzie J. S. 2001; Dengue virus binding to human leukocytic cell lines: receptor usage differs between cell types and virus strains. Virus Res 73:81–89 [CrossRef]
    [Google Scholar]
  5. Bishop N. E. 1997; An update on non-clathrin-coated endocytosis. Rev Med Virol 7:199–209 [CrossRef]
    [Google Scholar]
  6. Blanchard E., Belouzard S., Goueslain L., Wakita T., Dubuisson J., Wychowski C., Rouillé Y. 2006; Hepatitis C virus entry depends on clathrin-mediated endocytosis. J Virol 80:6964–6972 [CrossRef]
    [Google Scholar]
  7. Buss F., Luzio J. P., Kendrick-Jones J. 2001; Myosin VI, a new force in clathrin-mediated endocytosis. FEBS Lett 508:295–299 [CrossRef]
    [Google Scholar]
  8. Castilla V., Mersich S. E., Candurra N. A., Damonte E. B. 1994; The entry of Junin virus into Vero cells. Arch Virol 136:363–374 [CrossRef]
    [Google Scholar]
  9. Chen Y., Maguire T., Hileman R. E., Fromm J. R., Esko J. D., Linhardt R. J., Marks R. M. 1997; Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med 3:866–871 [CrossRef]
    [Google Scholar]
  10. Chu J. J. H., Ng M. L. 2004; Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic pathway. J Virol 78:10543–10555 [CrossRef]
    [Google Scholar]
  11. Chu J. J. H., Leong P. W. H., Ng M. L. 2006; Analysis of the endocytic pathway mediating the infectious entry of mosquito-borne flavivirus West Nile into Aedes albopictus mosquito (C6/36) cells. Virology 349:463–475 [CrossRef]
    [Google Scholar]
  12. Damonte E. B., Pujol C. A., Coto C. E. 2004; Prospects for the therapy and prevention of dengue virus infections. Adv Virus Res 63:239–285
    [Google Scholar]
  13. Durrbach A., Louvard D., Coudrier E. 1996; Actin filaments facilitate two steps of endocytosis. J Cell Sci 109:457–465
    [Google Scholar]
  14. Flanagan M. D., Lin S. 1980; Cytochalasins block actin filament elongation by binding to high-affinity sites associated with F-actin. J Biol Chem 255:835–838
    [Google Scholar]
  15. Germi R., Crance J. M., Garin D., Guimet J., Lortat-Jacob H., Ruigrok R. W. H., Zarski J. P., Drouet E. 2002; Heparan sulfate-mediated binding of infectious dengue virus type 2 and yellow fever virus. Virology 292:162–168 [CrossRef]
    [Google Scholar]
  16. Gollins S. W., Porterfield J. S. 1985; Flavivirus infection enhancement in macrophages: an electron microscopic study of viral cellular entry. J Gen Virol 66:1969–1982 [CrossRef]
    [Google Scholar]
  17. Gubler D. J. 2002; Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10:100–103 [CrossRef]
    [Google Scholar]
  18. Hacker J. K., Hardy J. L. 1997; Adsorptive endocytosis of California encephalitis virus into mosquito and mammalian cells: a role for G1. Virology 235:40–47 [CrossRef]
    [Google Scholar]
  19. Hamel E. 1996; Antimitotic natural products and their interaction with tubulin. Med Res Rev 16:207–231 [CrossRef]
    [Google Scholar]
  20. Hansen S. H., Sandving K., van Deurs B. 1993; Clathrin and HA2 adaptors: effects of potassium depletion, hypertonic medium, and cytosol acidification. J Cell Biol 121:61–72 [CrossRef]
    [Google Scholar]
  21. Hase T., Summers P. L., Eckels K. H. 1989; Flavivirus entry into cultured mosquito cells and human peripheral blood monocytes. Arch Virol 104:129–143 [CrossRef]
    [Google Scholar]
  22. Hilgard P., Stockert R. 2000; Heparan sulfate proteoglycans initiate dengue virus infection of hepatocytes. Hepatology 32:1069–1077 [CrossRef]
    [Google Scholar]
  23. Jindadamrongwech S., Smith D. R. 2004; Virus overlay protein binding assay (VOPBA) reveals serotype specific heterogeneity of dengue virus binding proteins on HepG2 human liver cells. Intervirology 47:370–373 [CrossRef]
    [Google Scholar]
  24. Krey T., Thiel H.-J., Rümenapf T. 2005; Acid-resistant bovine pestivirus requires activation for pH-triggered fusion during entry. J Virol 79:4191–4200 [CrossRef]
    [Google Scholar]
  25. Krishnan M. N., Sukumaran B., Pal U., Agaise H., Murray J. L., Hodge T. W., Fikrig E. 2007; Rab 5 is required for the cellular entry of dengue and West Nile viruses. J Virol 81:4881–4885 [CrossRef]
    [Google Scholar]
  26. Kuhn R. J., Zhang W., Rossmann M. G., Pletnev S. V., Corver J., Lenches E., Jones C. T., Mukhopadhyay S., Chipman P. R. other authors 2002; Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108:717–725 [CrossRef]
    [Google Scholar]
  27. Lecot S., Belouzard S., Dubuisson J., Rouillé Y. 2005; Bovine viral diarrhea virus entry is dependent on clathrin-mediated endocytosis. J Virol 79:10826–10829 [CrossRef]
    [Google Scholar]
  28. Lim H. Y., Ng M. L. 1999; A different mode of entry by dengue-2 neutralisation escape mutant virus. Arch Virol 144:989–995 [CrossRef]
    [Google Scholar]
  29. Lin Y.-L., Lei H.-Y., Lin Y.-S., Yeh T.-M., Chen S.-H., Liu H.-S. 2002; Heparin inhibits dengue-2 virus infection of five human liver cell lines. Antiviral Res 56:93–96 [CrossRef]
    [Google Scholar]
  30. Long G., Pan X., Kormelink R., Vlak J. M. 2006; Functional entry of baculovirus into insect and mammalian cells is dependent on clathrin-mediated endocytosis. J Virol 80:8830–8833 [CrossRef]
    [Google Scholar]
  31. Martínez-Barragán J. J., del Angel R. M. 2001; Identification of a putative coreceptor on Vero cells that participates in dengue 4 virus infection. J Virol 75:7818–7827 [CrossRef]
    [Google Scholar]
  32. Meertens L., Bertaux C., Dragic T. 2006; Hepatitis C virus entry requires a critical postinternalization step and delivery to early endosomes via clathrin-coated vesicles. J Virol 80:11571–11578 [CrossRef]
    [Google Scholar]
  33. Mizutani T., Kobayashi M., Eshita Y., Shirato K., Kimura T., Ako I., Miyoshi H., Takasaki T., Kurane I. other authors 2003; Involvement of the JNK-like protein of the Aedes albopictus mosquito cell line, C6/36, in phagocytosis, endocytosis and infection with West Nile virus. Insect Mol Biol 12:491–499 [CrossRef]
    [Google Scholar]
  34. Mizzen L., Hilton A., Cheley S., Anderson R. 1985; Attenuation of murine coronavirus infection by ammonium chloride. Virology 142:378–388 [CrossRef]
    [Google Scholar]
  35. Modis Y., Ogata S., Clements D., Harrison S. C. 2003; A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A 100:6986–6991 [CrossRef]
    [Google Scholar]
  36. Modis Y., Ogata S., Clements D., Harrison S. C. 2004; Structure of the dengue virus envelope protein after membrane fusion. Nature 427:313–319 [CrossRef]
    [Google Scholar]
  37. Moreno-Altamirano M. M. B., Sánchez-García F. J., Muñoz M. L. 2002; Non Fc receptor-mediated infection of human macrophages by dengue virus serotype 2. J Gen Virol 83:1123–1130
    [Google Scholar]
  38. Muñoz M. L., Cisneros A., Cruz J., Das P., Tovar R., Ortega A. 1998; Putative dengue virus receptors from mosquito cells. FEMS Microbiol Lett 168:251–258 [CrossRef]
    [Google Scholar]
  39. Navarro-Sánchez E., Altmeyer R., Amara A., Schwartz O., Fieschi F., Virelizier J. L., Arenzana-Seisdedos F., Despres P. 2003; Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep 4:723–728 [CrossRef]
    [Google Scholar]
  40. Nawa M. 1998; Effects of bafilomycin on Japanese encephalitis virus in C6/36 mosquito cells. Arch Virol 143:1555–1568 [CrossRef]
    [Google Scholar]
  41. Nawa M., Takasaki T., Yamada K.-I., Kurane I., Akatsuka T. 2003; Interference in Japanese encephalitis virus infection of Vero cells by a cationic amphiphilic drug, chlorpromazine. J Gen Virol 84:1737–1741 [CrossRef]
    [Google Scholar]
  42. Pelkmans L., Helenius A. 2003; Insider information: what viruses tell us about endocytosis. Curr Opin Cell Biol 15:414–422 [CrossRef]
    [Google Scholar]
  43. Pelkmans L., Kartenbeck J., Helenius A. 2001; Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3:473–483 [CrossRef]
    [Google Scholar]
  44. Qualmann B., Kessels M. M. 2002; Endocytosis and the cytoskeleton. Int Rev Cytol 220:93–144
    [Google Scholar]
  45. Randolph V. B., Stollar V. 1990; Low pH-induced cell fusion in flavivirus-infected Aedes albopictus cell cultures. J Gen Virol 71:1845–1850 [CrossRef]
    [Google Scholar]
  46. Reyes-del Valle J., del Angel R. M. 2004; Isolation of putative dengue virus receptor molecules by affinity chromatography using a recombinant E protein ligand. J Virol Methods 116:95–102 [CrossRef]
    [Google Scholar]
  47. Reyes-del Valle J., Chávez-Salinas S., Medina F., del Angel R. M. 2005; Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 79:4557–4567 [CrossRef]
    [Google Scholar]
  48. Sakoonwatanyoo P., Boonsanay V., Smith D. R. 2006; Growth and production of the dengue virus in C6/36 cells and identification of a laminin-binding protein as a candidate serotype 3 and 4 receptor protein. Intervirology 49:161–172 [CrossRef]
    [Google Scholar]
  49. Salas-Benito J. S., del Angel R. M. 1997; Identification of two surface proteins from C6/36 cells that bind dengue type 4 virus. J Virol 71:7246–7252
    [Google Scholar]
  50. Schimmoller F., Simon I., Pfeffer S. R. 1998; Rab GTPases, directors of vesicle docking. J Biol Chem 273:22161–22164 [CrossRef]
    [Google Scholar]
  51. Sieczkarski S. B., Whittaker G. R. 2002; Dissecting virus entry via endocytosis. J Gen Virol 83:1535–1545
    [Google Scholar]
  52. Stiasny K., Heinz F. X. 2006; Flavivirus membrane fusion. J Gen Virol 87:2755–2766 [CrossRef]
    [Google Scholar]
  53. Summers P. L., Houston Cohen W., Ruiz M. M., Hase T., Eckels K. H. 1989; Flaviviruses can mediate fusion from without in Aedes albopictus mosquito cell cultures. Virus Res 12:383–392 [CrossRef]
    [Google Scholar]
  54. Talarico L. B., Damonte E. B. 2007; Interference in dengue virus adsorption and uncoating by carrageenans. Virology 363:473–485 [CrossRef]
    [Google Scholar]
  55. Talarico L. B., Pujol C. A., Zibetti R. G. M., Faría P. C. S., Noseda M. D., Duarte M. E. R., Damonte E. B. 2005; The antiviral activity of sulfated polysaccharides against dengue virus is dependent on virus serotype and host cell. Antiviral Res 66:103–110 [CrossRef]
    [Google Scholar]
  56. Thepparit C., Smith D. R. 2004; Serotype-specific entry of dengue virus into liver cells: identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor. J Virol 78:12647–12656 [CrossRef]
    [Google Scholar]
  57. Volk D. E., Lee Y. C., Li X., Thiviyanathan V., Gromowski G. D., Li L., Lamb A. R., Beasley D. W., Barrett A. D., Gorenstein D. G. 2007; Solution structure of the envelope protein domain III of dengue-4 virus. Virology 364:147–154 [CrossRef]
    [Google Scholar]
  58. Wang L. H., Rothberg K. G., Anderson R. G. 1993; Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol 123:1107–1117 [CrossRef]
    [Google Scholar]
  59. Wei H.-Y., Jiang L.-F., Fang L.-F., Guo H.-Y. 2003; Dengue virus type 2 infects human endothelial cells through binding of the viral envelope glycoprotein to cell surface polypeptides. J Gen Virol 84:3095–3098 [CrossRef]
    [Google Scholar]
  60. Wei T., Chen H., Ichiki-Uehara T., Hibino H., Omura T. 2007; Entry of Rice dwarf virus into cultured cells of its insect vector involves clathrin-mediated endocytosis. J Virol 81:7811–7815 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83357-0
Loading
/content/journal/jgv/10.1099/vir.0.83357-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error