1887

Abstract

A fundamental step in the efficient production of human cytomegalovirus (HCMV) progeny is viral egress from the nucleus to the cytoplasm of infected cells. In the family , this process involves alteration of nuclear lamina components by two highly conserved proteins, whose homologues in HCMV are named pUL50 and pUL53. This study showed that HCMV infection induced the mislocalization of nuclear lamins and that pUL50 and pUL53 play a role in this event. At late stages of infection, both lamin A/C and lamin B showed an irregular distribution on the nuclear rim, coincident with areas of pUL53 accumulation. No variations in the total amount of nuclear lamins could be detected, supporting the view that HCMV induces a qualitative, rather than a quantitative, alteration of these cellular components, as has been suggested previously for other herpesviruses. Interestingly, pUL53, in the absence of other viral products, localized diffusely in the nucleus, whilst the co-expression and interaction of pUL53 with its partner, pUL50, restored its nuclear rim localization in distinct patches, thus indicating that pUL50 is sufficient to induce the localization of pUL53 observed during virus infection. Importantly, analysis of the nuclear lamina in the presence of pUL50–pUL53 complexes at the nuclear boundary and in the absence of other viral products showed that the two viral proteins were sufficient to promote alterations of lamins, strongly resembling those observed during HCMV infection. These results suggest that pUL50 and pUL53 may play an important role in the exit of virions from the nucleus by inducing structural modifications of the nuclear lamina.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83377-0
2008-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/3/731.html?itemId=/content/journal/jgv/10.1099/vir.0.83377-0&mimeType=html&fmt=ahah

References

  1. Bjerke S. L., Cowan J. M., Kerr J. K., Reynolds A. E., Baines J. D., Roller R. J. 2003; Effects of charged cluster mutations on the function of herpes simplex virus type 1 UL34 protein. J Virol 77:7601–7610 [CrossRef]
    [Google Scholar]
  2. Broers J. L., Ramaekers F. C. 2004; Dynamics of nuclear lamina assembly and disassembly. Symp Soc Exp Biol 56:177–192
    [Google Scholar]
  3. Broers J. L., Machiels B. M., Kuijpers H. J., Smedts F., van den Kieboom R., Raymond Y., Ramaekers F. C. 1997; A- and B-type lamins are differentially expressed in normal human tissues. Histochem Cell Biol 107:505–517 [CrossRef]
    [Google Scholar]
  4. Broers J. L., Ramaekers F. C., Bonne G., Yaou R. B., Hutchison C. J. 2006; Nuclear lamins: laminopathies and their role in premature ageing. Physiol Rev 86:967–1008 [CrossRef]
    [Google Scholar]
  5. Bubeck A., Wagner M., Ruzsics Z., Lotzerich M., Iglesias M., Singh I. R., Koszinowski U. H. 2004; Comprehensive mutational analysis of a herpesvirus gene in the viral genome context reveals a region essential for virus replication. J Virol 78:8026–8035 [CrossRef]
    [Google Scholar]
  6. Buser C., Walther P., Mertens T., Michel D. 2007; Cytomegalovirus primary envelopment occurs at large infoldings of the inner nuclear membrane. J Virol 81:3042–3048 [CrossRef]
    [Google Scholar]
  7. Cevenini R., Sambri V., Pileri S., Ratti G., La Placa M. 1991; Development of transplantable ascites tumours which continuously produce polyclonal antibodies in pristane primed BALB/c mice immunized with bacterial antigens and complete Freund's adjuvant. J Immunol Methods 140:111–118 [CrossRef]
    [Google Scholar]
  8. Chang Y. E., Van Sant C., Krug P. W., Sears A. E., Roizman B. 1997; The null mutant of the UL31 gene of herpes simplex virus 1: construction and phenotype in infected cells. J Virol 71:8307–8315
    [Google Scholar]
  9. Dal Monte P., Pignatelli S., Zini N., Maraldi N. M., Perret E., Prevost M. C., Landini M. P. 2002; Analysis of intracellular and intraviral localization of the human cytomegalovirus UL53 protein. J Gen Virol 83:1005–1012
    [Google Scholar]
  10. Farina A., Santarelli R., Gonnella R., Bei R., Muraro R., Cardinali G., Uccini S., Ragona G., Frati L. other authors 2000; The BFRF1 gene of Epstein–Barr virus encodes a novel protein. J Virol 74:3235–3244 [CrossRef]
    [Google Scholar]
  11. Fuchs W., Klupp B. G., Granzow H., Osterrieder N., Mettenleiter T. C. 2002; The interacting UL31 and UL34 gene products of pseudorabies virus are involved in egress from the host-cell nucleus and represent components of primary enveloped but not mature virions. J Virol 76:364–378 [CrossRef]
    [Google Scholar]
  12. Gonnella R., Farina A., Santarelli R., Raffa S., Feederle R., Bei R., Granato M., Modesti A., Frati L. other authors 2005; Characterization and intracellular localization of the Epstein–Barr virus protein BFLF2: interactions with BFRF1 and with the nuclear lamina. J Virol 79:3713–3727 [CrossRef]
    [Google Scholar]
  13. Heald R., McKeon F. 1990; Mutations of phosphorylation sites in lamin A that prevent nuclear lamina disassembly in mitosis. Cell 61:579–589 [CrossRef]
    [Google Scholar]
  14. Klupp B. G., Granzow H., Mettenleiter T. C. 2001; Effect of the pseudorabies virus US3 protein on nuclear membrane localization of the UL34 protein and virus egress from the nucleus. J Gen Virol 82:2363–2371
    [Google Scholar]
  15. Lake C. M., Hutt-Fletcher L. M. 2004; The Epstein–Barr virus BFRF1 and BFLF2 proteins interact and coexpression alters their cellular localization. Virology 320:99–106 [CrossRef]
    [Google Scholar]
  16. Leach N., Bjerke S. L., Christenson D. K., Bouchard J. M., Mou F., Park R., Baines J., Haraguchi T., Roller R. J. 2007; Emerin is hyperphosphorylated and redistributed in herpes simplex virus type 1-infected cells in a manner dependent upon both UL34 and US3. J Virol 81:10792–10803 [CrossRef]
    [Google Scholar]
  17. Lotzerich M., Ruzsics Z., Koszinowski U. H. 2006; Functional domains of murine cytomegalovirus nuclear egress protein M53/p38. J Virol 80:73–84 [CrossRef]
    [Google Scholar]
  18. Marschall M., Marzi A., , aus dem Siepen P., Jochmann R., Kalmer M., Auerochs S., Lischka P., Leis M., Stamminger T. 2005; Cellular p32 recruits cytomegalovirus kinase pUL97 to redistribute the nuclear lamina. J Biol Chem 280:33357–33367 [CrossRef]
    [Google Scholar]
  19. Mettenleiter T. C. 2004; Budding events in herpesvirus morphogenesis. Virus Res 106:167–180 [CrossRef]
    [Google Scholar]
  20. Mettenleiter T. C., Klupp B. G., Granzow H. 2006; Herpesvirus assembly: a tale of two membranes. Curr Opin Microbiol 9:423–429 [CrossRef]
    [Google Scholar]
  21. Milbradt J., Auerochs S., Marschall M. 2007; Cytomegaloviral proteins pUL50 and pUL53 are associated with the nuclear lamina and interact with cellular protein kinase C. J Gen Virol 88:2642–2650 [CrossRef]
    [Google Scholar]
  22. Morris J. B., Hofemeister H., O'Hare P. 2007; Herpes simplex virus infection induces phosphorylation and delocalization of emerin, a key inner nuclear membrane protein. J Virol 81:4429–4437 [CrossRef]
    [Google Scholar]
  23. Mou F., Forest T., Baines J. D. 2007; US3 of herpes simplex virus type 1 encodes a promiscuous protein kinase that phosphorylates and alters localization of lamin A/C in infected cells. J Virol 81:6459–6470 [CrossRef]
    [Google Scholar]
  24. Muranyi W., Haas J., Wagner M., Krohne G., Koszinowski U. H. 2002; Cytomegalovirus recruitment of cellular kinases to dissolve the nuclear lamina. Science 297:854–857 [CrossRef]
    [Google Scholar]
  25. Nassiri M. R., Gilloteaux J., Taichman R. S., Drach J. C. 1998; Ultrastructural aspects of cytomegalovirus-infected fibroblastic stromal cells of human bone marrow. Tissue Cell 30:398–406 [CrossRef]
    [Google Scholar]
  26. Park R., Baines J. D. 2006; Herpes simplex virus type 1 infection induces activation and recruitment of protein kinase C to the nuclear membrane and increased phosphorylation of lamin B. J Virol 80:494–504 [CrossRef]
    [Google Scholar]
  27. Peter M., Heitlinger E., Haner M., Aebi U., Nigg E. A. 1991; Disassembly of in vitro formed lamin head-to-tail polymers by CDC2 kinase. EMBO J 10:1535–1544
    [Google Scholar]
  28. Radsak K., Schneider D., Jost E., Brucher K. H. 1989; Alteration of nuclear lamina protein in human fibroblasts infected with cytomegalovirus (HCMV). Arch Virol 105:103–112 [CrossRef]
    [Google Scholar]
  29. Reynolds A. E., Ryckman B. J., Baines J. D., Zhou Y., Liang L., Roller R. J. 2001; UL31 and UL34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids. J Virol 75:8803–8817 [CrossRef]
    [Google Scholar]
  30. Reynolds A. E., Wills E. G., Roller R. J., Ryckman B. J., Baines J. D. 2002; Ultrastructural localization of the herpes simplex virus type 1 UL31, UL34, and US3 proteins suggests specific roles in primary envelopment and egress of nucleocapsids. J Virol 76:8939–8952 [CrossRef]
    [Google Scholar]
  31. Reynolds A. E., Liang L., Baines J. D. 2004; Conformational changes in the nuclear lamina induced by herpes simplex virus type 1 require genes UL31 and UL34. J Virol 78:5564–5575 [CrossRef]
    [Google Scholar]
  32. Roller R. J., Zhou Y., Schnetzer R., Ferguson J., DeSalvo D. 2000; Herpes simplex virus type 1 UL34 gene product is required for viral envelopment. J Virol 74:117–129 [CrossRef]
    [Google Scholar]
  33. Ruebner B. H., Hirano T., Slusser R. J., Medearis D. N. Jr 1965; Human cytomegalovirus infection. Electron microscopic and histochemical changes in cultures of human fibroblasts. Am J Pathol 46:477–496
    [Google Scholar]
  34. Rzepecki R. 2002; The nuclear lamins and the nuclear envelope. Cell Mol Biol Lett 7:1019–1035
    [Google Scholar]
  35. Schnee M., Ruzsics Z., Bubeck A., Koszinowski U. H. 2006; Common and specific properties of herpesvirus UL34/UL31 protein family members revealed by protein complementation assay. J Virol 80:11658–11666 [CrossRef]
    [Google Scholar]
  36. Scott E. S., O'Hare P. 2001; Fate of the inner nuclear membrane protein lamin B receptor and nuclear lamins in herpes simplex virus type 1 infection. J Virol 75:8818–8830 [CrossRef]
    [Google Scholar]
  37. Severi B., Landini M. P., Govoni E. 1988; Human cytomegalovirus morphogenesis: an ultrastructural study of the late cytoplasmic phases. Arch Virol 98:51–64 [CrossRef]
    [Google Scholar]
  38. Shiba C., Daikoku T., Goshima F., Takakuwa H., Yamauchi Y., Koiwai O., Nishiyama Y. 2000; The UL34 gene product of herpes simplex virus type 2 is a tail-anchored type II membrane protein that is significant for virus envelopment. J Gen Virol 81:2397–2405
    [Google Scholar]
  39. Simpson-Holley M., Colgrove R. C., Nalepa G., Harper J. W., Knipe D. M. 2005; Identification and functional evaluation of cellular and viral factors involved in the alteration of nuclear architecture during herpes simplex virus 1 infection. J Virol 79:12840–12851 [CrossRef]
    [Google Scholar]
  40. Skepper J. N., Whiteley A., Browne H., Minson A. 2001; Herpes simplex virus nucleocapsids mature to progeny virions by an envelopment → deenvelopment → reenvelopment pathway. J Virol 75:5697–5702 [CrossRef]
    [Google Scholar]
  41. Stackpole C. W. 1969; Herpes-type virus of the frog renal adenocarcinoma. I. Virus development in tumor transplants maintained at low temperature. J Virol 4:75–93
    [Google Scholar]
  42. Stuurman N. 1997; Identification of a conserved phosphorylation site modulating nuclear lamin polymerization. FEBS Lett 401:171–174 [CrossRef]
    [Google Scholar]
  43. Stuurman N., Heins S., Aebi U. 1998; Nuclear lamins: their structure, assembly, and interactions. J Struct Biol 122:42–66 [CrossRef]
    [Google Scholar]
  44. Thompson L. J., Fields A. P. 1996; β II protein kinase C is required for the G2/M phase transition of cell cycle. J Biol Chem 271:15045–15053 [CrossRef]
    [Google Scholar]
  45. Yamauchi Y., Shiba C., Goshima F., Nawa A., Murata T., Nishiyama Y. 2001; Herpes simplex virus type 2 UL34 protein requires UL31 protein for its relocation to the internal nuclear membrane in transfected cells. J Gen Virol 82:1423–1428
    [Google Scholar]
  46. Ye G. J., Roizman B. 2000; The essential protein encoded by the UL31 gene of herpes simplex virus 1 depends for its stability on the presence of UL34 protein. Proc Natl Acad Sci U S A 97:11002–11007 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83377-0
Loading
/content/journal/jgv/10.1099/vir.0.83377-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error