1887

Abstract

Viral nuclear oncoproteins EBNA3A and EBNA3C are essential for the efficient immortalization of B cells by Epstein–Barr virus (EBV) and it is assumed that they play an essential role in viral persistence in the human host. In order to identify cellular genes regulated by EBNA3A expression, cDNA encoding EBNA3A was incorporated into a recombinant adenoviral vector. Microarray analysis of human diploid fibroblasts infected with either adenovirus EBNA3A or an empty control adenovirus consistently showed an EBNA3A-specific induction of mRNA corresponding to the chaperones Hsp70 and Hsp70B/B′ and co-chaperones Bag3 and DNAJA1/Hsp40. Analysis of infected fibroblasts by real-time quantitative RT-PCR and Western blotting confirmed that EBNA3A, but not EBNA3C, induced expression of Hsp70, Hsp70B/B′, Bag3 and DNAJA1/Hsp40. This was also confirmed in a stable, inducible expression system. EBNA3A activated transcription from the Hsp70B promoter, but not multimerized heat-shock elements in transient transfection assays, consistent with specific chaperone and co-chaperone upregulation. Co-immunoprecipitation experiments suggest that EBNA3A can form a complex with the chaperone/co-chaperone proteins in both adenovirus-infected cells and EBV-immortalized lymphoblastoid cell lines. Consistent with this, induction of EBNA3A resulted in redistribution of Hsp70 from the cytoplasm to the nucleus. EBNA3A therefore specifically induces (and then interacts with) all of the factors necessary for an active Hsp70 chaperone complex.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83414-0
2008-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/4/866.html?itemId=/content/journal/jgv/10.1099/vir.0.83414-0&mimeType=html&fmt=ahah

References

  1. Antoku K., Maser R. S., Scully W. J. Jr, Delach S. M., Johnson D. E. 2001; Isolation of Bcl-2 binding proteins that exhibit homology with BAG-1 and suppressor of death domains protein. Biochem Biophys Res Commun 286:1003–1010 [CrossRef]
    [Google Scholar]
  2. Bain M., Watson R. J., Farrell P. J., Allday M. J. 1996; Epstein-Barr virus nuclear antigen 3C is a powerful repressor of transcription when tethered to DNA. J Virol 70:2481–2489
    [Google Scholar]
  3. Beere H. M., Green D. R. 2001; Stress management – heat shock protein-70 and the regulation of apoptosis. Trends Cell Biol 11:6–10 [CrossRef]
    [Google Scholar]
  4. Bornkamm G. W., Hammerschmidt W. 2001; Molecular virology of Epstein-Barr virus. Philos Trans R Soc Lond B Biol Sci 356:437–459 [CrossRef]
    [Google Scholar]
  5. Bornkamm G. W., Berens C., Kuklik-Roos C., Bechet J. M., Laux G., Bachl J., Korndoerfer M., Schlee M., Holzel M. other authors 2005; Stringent doxycycline-dependent control of gene activities using an episomal one-vector system. Nucleic Acids Res 33:e137 [CrossRef]
    [Google Scholar]
  6. Bukau B., Horwich A. L. 1998; The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366 [CrossRef]
    [Google Scholar]
  7. Calderwood S. K., Khaleque M. A., Sawyer D. B., Ciocca D. R. 2006; Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 31:164–172 [CrossRef]
    [Google Scholar]
  8. Chinnadurai G. 2002; CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol Cell 9:213–224 [CrossRef]
    [Google Scholar]
  9. Cludts I., Farrell P. J. 1998; Multiple functions within the Epstein-Barr virus EBNA-3A protein. J Virol 72:1862–1869
    [Google Scholar]
  10. Demand J., Luders J., Hohfeld J. 1998; The carboxy-terminal domain of Hsc70 provides binding sites for a distinct set of chaperone cofactors. Mol Cell Biol 18:2023–2028
    [Google Scholar]
  11. Doong H., Rizzo K., Fang S., Kulpa V., Weissman A. M., Kohn E. C. 2003; CAIR-1/BAG-3 abrogates heat shock protein-70 chaperone complex-mediated protein degradation: accumulation of poly-ubiquitinated Hsp90 client proteins. J Biol Chem 278:28490–28500 [CrossRef]
    [Google Scholar]
  12. Esser C., Alberti S., Hohfeld J. 2004; Cooperation of molecular chaperones with the ubiquitin/proteasome system. Biochim Biophys Acta 1695171–188 [CrossRef]
    [Google Scholar]
  13. Gabai V. L., Meriin A. B., Mosser D. D., Caron A. W., Rits S., Shifrin V. I., Sherman M. Y. 1997; Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance. J Biol Chem 272:18033–18037 [CrossRef]
    [Google Scholar]
  14. Greene L. E., Zinner R., Naficy S., Eisenberg E. 1995; Effect of nucleotide on the binding of peptides to 70-kDa heat shock protein. J Biol Chem 270:2967–2973 [CrossRef]
    [Google Scholar]
  15. Hart S. L., Arancibia-Carcamo C. V., Wolfert M. A., Mailhos C., , O'; Reilly N. J., Ali R. R., Coutelle C., George A. J., Harbottle R. P. other authors 1998; Lipid-mediated enhancement of transfection by a nonviral integrin-targeting vector. Hum Gene Ther 9:575–585 [CrossRef]
    [Google Scholar]
  16. He T. C., Zhou S., da Costa L. T., Yu J., Kinzler K. W., Vogelstein B. 1998; A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 95:2509–2514 [CrossRef]
    [Google Scholar]
  17. He H., Soncin F., Grammatikakis N., Li Y., Siganou A., Gong J., Brown S. A., Kingston R. E., Calderwood S. K. 2003; Elevated expression of heat shock factor (HSF) 2A stimulates HSF1-induced transcription during stress. J Biol Chem 278:35465–35475 [CrossRef]
    [Google Scholar]
  18. Hickabottom M., Parker G. A., Freemont P., Crook T., Allday M. J. 2002; Two nonconsensus sites in the Epstein-Barr virus oncoprotein EBNA3A cooperate to bind the co-repressor carboxyl-terminal-binding protein (CtBP). J Biol Chem 277:47197–47204 [CrossRef]
    [Google Scholar]
  19. Kashuba E., Pokrovskaja K., Klein G., Szekely L. 1999; Epstein-Barr virus-encoded nuclear protein EBNA-3 interacts with the epsilon-subunit of the T-complex protein 1 chaperonin complex. J Hum Virol 2:33–37
    [Google Scholar]
  20. Kelly G. L., Milner A. E., Tierney R. J., Croom-Carter D. S., Altmann M., Hammerschmidt W., Bell A. I., Rickinson A. B. 2005; Epstein-Barr virus nuclear antigen 2 (EBNA2) gene deletion is consistently linked with EBNA3A, −3B, and −3C expression in Burkitt'; s lymphoma cells and with increased resistance to apoptosis. J Virol 79:10709–10717 [CrossRef]
    [Google Scholar]
  21. Knight J. S., Lan K., Subramanian C., Robertson E. S. 2003; Epstein-Barr virus nuclear antigen 3C recruits histone deacetylase activity and associates with the corepressors mSin3A and NCoR in human B-cell lines. J Virol 77:4261–4272 [CrossRef]
    [Google Scholar]
  22. Le Roux A., Kerdiles B., Walls D., Dedieu J. F., Perricaudet M. 1994; The Epstein-Barr virus determined nuclear antigens EBNA-3A, -3B, and -3C repress EBNA-2-mediated transactivation of the viral terminal protein 1 gene promoter. Virology 205:596–602 [CrossRef]
    [Google Scholar]
  23. Leao M., Anderton E., Wade M., Meekings K., Allday M. J. 2007; Epstein-Barr virus-induced resistance to drugs that activate the mitotic spindle assembly checkpoint in Burkitt'; s lymphoma cells. J Virol 81:248–260 [CrossRef]
    [Google Scholar]
  24. Lee J. H., Takahashi T., Yasuhara N., Inazawa J., Kamada S., Tsujimoto Y. 1999; Bis, a Bcl-2-binding protein that synergizes with Bcl-2 in preventing cell death. Oncogene 18:6183–6190 [CrossRef]
    [Google Scholar]
  25. Leung T. K., Rajendran M. Y., Monfries C., Hall C., Lim L. 1990; The human heat-shock protein family. Expression of a novel heat-inducible HSP70 (HSP70B′) and isolation of its cDNA and genomic DNA. Biochem J 267:125–132
    [Google Scholar]
  26. Maruo S., Johannsen E., Illanes D., Cooper A., Kieff E. 2003; Epstein-Barr virus nuclear protein EBNA3A is critical for maintaining lymphoblastoid cell line growth. J Virol 77:10437–10447 [CrossRef]
    [Google Scholar]
  27. Mayer M. P. 2005; Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies. Rev Physiol Biochem Pharmacol 153:1–46
    [Google Scholar]
  28. McCarty J. S., Buchberger A., Reinstein J., Bukau B. 1995; The role of ATP in the functional cycle of the DnaK chaperone system. J Mol Biol 249:126–137 [CrossRef]
    [Google Scholar]
  29. Morimoto R. I. 1998; Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12:3788–3796 [CrossRef]
    [Google Scholar]
  30. Mosser D. D., Morimoto R. I. 2004; Molecular chaperones and the stress of oncogenesis. Oncogene 23:2907–2918 [CrossRef]
    [Google Scholar]
  31. Mosser D. D., Caron A. W., Bourget L., Denis-Larose C., Massie B. 1997; Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol 17:5317–5327
    [Google Scholar]
  32. Mosser D. D., Caron A. W., Bourget L., Meriin A. B., Sherman M. Y., Morimoto R. I., Massie B. 2000; The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol Cell Biol 20:7146–7159 [CrossRef]
    [Google Scholar]
  33. O'; Nions, J. & Allday, M. J. 2004; Proliferation and differentiation in isogenic populations of peripheral B cells activated by Epstein–Barr virus or T cell-derived mitogens. J Gen Virol 85:881–895 [CrossRef]
    [Google Scholar]
  34. Palleros D. R., Reid K. L., Shi L., Welch W. J., Fink A. L. 1993; ATP-induced protein-Hsp70 complex dissociation requires K+ but not ATP hydrolysis. Nature 365:664–666 [CrossRef]
    [Google Scholar]
  35. Radkov S. A., Bain M., Farrell P. J., West M., Rowe M., Allday M. J. 1997; Epstein-Barr virus EBNA3C represses Cp, the major promoter for EBNA expression, but has no effect on the promoter of the cell gene CD21. J Virol 71:8552–8562
    [Google Scholar]
  36. Radkov S. A., Touitou R., Brehm A., Rowe M., West M., Kouzarides T., Allday M. J. 1999; Epstein-Barr virus nuclear antigen 3C interacts with histone deacetylase to repress transcription. J Virol 73:5688–5697
    [Google Scholar]
  37. Rickinson A. B., Kieff E. 2007; Epstein-Barr virus. In Fields Virology , 5th edn. pp 2655–2700Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  38. Robertson E. S., Lin J., Kieff E. 1996; The amino-terminal domains of Epstein-Barr virus nuclear proteins 3A, 3B, and 3C interact with RBPJ κ . J Virol 70:3068–3074
    [Google Scholar]
  39. Spender L. C., Cannell E. J., Hollyoake M., Wensing B., Gawn J. M., Brimmell M., Packham G., Farrell P. J. 1999; Control of cell cycle entry and apoptosis in B lymphocytes infected by Epstein-Barr virus. J Virol 73:4678–4688
    [Google Scholar]
  40. Srivastava P. 2002; Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2:185–194 [CrossRef]
    [Google Scholar]
  41. Stanhill A., Levin V., Hendel A., Shachar I., Kazanov D., Arber N., Kaminski N., Engelberg D. 2006; Ha- rasval12 induces HSP70b transcription via the HSE/HSF1 system, but HSP70b expression is suppressed in Ha- rasval12 -transformed cells. Oncogene 25:1485–1495 [CrossRef]
    [Google Scholar]
  42. Takayama S., Sato T., Krajewski S., Kochel K., Irie S., Millan J. A., Reed J. C. 1995; Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity. Cell 80:279–284 [CrossRef]
    [Google Scholar]
  43. Takayama S., Xie Z., Reed J. C. 1999; An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. J Biol Chem 274:781–786 [CrossRef]
    [Google Scholar]
  44. Tomkinson B., Kieff E. 1992; Second-site homologous recombination in Epstein-Barr virus: insertion of type 1 EBNA 3 genes in place of type 2 has no effect on in vitro infection. J Virol 66:780–789
    [Google Scholar]
  45. Tomkinson B., Robertson E., Kieff E. 1993; Epstein-Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. J Virol 67:2014–2025
    [Google Scholar]
  46. Touitou R., Hickabottom M., Parker G., Crook T., Allday M. J. 2001; Physical and functional interactions between the corepressor CtBP and the Epstein-Barr virus nuclear antigen EBNA3C. J Virol 75:7749–7755 [CrossRef]
    [Google Scholar]
  47. Touitou R., O'; Nions, J. Heaney. J., Allday M. J. 2005; Epstein–Barr virus EBNA3 proteins bind to the C8/ α 7 subunit of the 20S proteasome and are degraded by 20S proteasomes in vitro , but are very stable in latently infected B cells. J Gen Virol 86:1269–1277 [CrossRef]
    [Google Scholar]
  48. Trinklein N. D., Murray J. I., Hartman S. J., Botstein D., Myers R. M. 2004; The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Mol Biol Cell 15:1254–1261
    [Google Scholar]
  49. White R. E., Wade-Martins R., Hart S. L., Frampton J., Huey B., Desai-Mehta A., Cerosaletti K. M., Concannon P., James M. R. 2003; Functional delivery of large genomic DNA to human cells with a peptide-lipid vector. J Gene Med 5:883–892 [CrossRef]
    [Google Scholar]
  50. Zeng M., Smith S. K., Siegel F., Shi Z., Van Kampen K. R., Elmets C. A., Tang D. C. 2001; AdEasy system made easier by selecting the viral backbone plasmid preceding homologous recombination. Biotechniques 31:260–262
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83414-0
Loading
/content/journal/jgv/10.1099/vir.0.83414-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error