1887

Abstract

Peptide-conjugated phosphorodiamidate morpholino oligomers (PPMO) are single-stranded nucleic acid-analogue antisense agents that enter cells readily and can reduce gene expression by steric blocking of complementary RNA (cRNA) sequences. Here, we tested a panel of PPMO designed to target conserved sequences in the RNA genome segments encoding polymerase subunits of a highly pathogenic mouse-adapted influenza A virus (SC35M; H7N7). Three PPMO, targeting the translation start site region of PB1 or NP mRNA or the 3′-terminal region of NP viral RNA (vRNA), potently inhibited virus replication in MDCK cells. Primer extension assays showed that treatment with any of the effective PPMO led to markedly reduced levels of mRNA, cRNA and vRNA. Initially, the potential toxicity of a range of intranasally administered PPMO doses was evaluated, by measuring their effect on body weight of uninfected mice. Subsequently, a non-toxic dosing regimen was used to investigate the effect of various PPMO on SC35M infection in a mouse model. Mice administered intranasal treatment of PPMO targeting the PB1-AUG region or NP vRNA, at 3 μg per dose, given once 3 h before and once 2 days after intranasal infection with 10×LD of SC35M, showed a 2 log reduction of viral titre in the lungs and 50 % survival for the 16 day duration of the experiment, whereas the NP-AUG-targeted PPMO treatment resulted in 30 % survival of an otherwise lethal infection. These data suggest that PPMO provide a useful reagent to investigate influenza virus molecular biology and may constitute a therapeutic strategy against highly pathogenic influenza viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83449-0
2008-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/4/939.html?itemId=/content/journal/jgv/10.1099/vir.0.83449-0&mimeType=html&fmt=ahah

References

  1. Abe T., Mizuta T., Hatta T., Miyano-Kurosaki N., Fujiwara M., Takai K., Shigeta S., Yokota T., Takaku H. 2001; Antisense therapy of influenza. Eur J Pharm Sci 13:61–69 [CrossRef]
    [Google Scholar]
  2. Abes S., Moulton H. M., Clair P., Prevot P., Youngblood D. S., Wu R. P., Iversen P. L., Lebleu B. 2006; Vectorization of morpholino oligomers by the (R-Ahx-R)4 peptide allows efficient splicing correction in the absence of endosomolytic agents. J Control Release 116:304–313 [CrossRef]
    [Google Scholar]
  3. Brown M. A., Hural J. 1997; Functions of IL-4 and control of its expression. Crit Rev Immunol 17:1–32 [CrossRef]
    [Google Scholar]
  4. Burrer R., Neuman B. W., Ting J. P., Stein D. A., Moulton H. M., Iversen P. L., Kuhn P., Buchmeier M. J. 2007; Antiviral effects of antisense morpholino oligomers in murine coronavirus infection models. J Virol 81:5637–5648 [CrossRef]
    [Google Scholar]
  5. Claas E. C., Osterhaus A. D., van Beek R., De Jong J. C., Rimmelzwaan G. F., Senne D. A., Krauss S., Shortridge K. F., Webster R. G. 1998; Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351:472–477 [CrossRef]
    [Google Scholar]
  6. de Jong M. D., Tran T. T., Truong H. K., Vo M. H., Smith G. J., Nguyen V. C., Bach V. C., Phan T. Q., Do Q. H. other authors 2005; Oseltamivir resistance during treatment of influenza A (H5N1) infection. N Engl J Med 353:2667–2672 [CrossRef]
    [Google Scholar]
  7. de Jong M. D., Simmons C. P., Thanh T. T., Hien V. M., Smith G. J., Chau T. N., Hoang D. M., Chau N. V., Khanh T. H. other authors 2006; Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med 12:1203–1207 [CrossRef]
    [Google Scholar]
  8. Deas T. S., Bennett C. J., Jones S. A., Tilgner M., Ren P., Behr M. J., Stein D. A., Iversen P. L., Kramer L. D. other authors 2007; In vitro resistance selection and in vivo efficacy of morpholino oligomers against West Nile virus. Antimicrob Agents Chemother 51:2470–2482 [CrossRef]
    [Google Scholar]
  9. Elton D., Digard P., Tiley L., Ortin J. 2006; Structure and Function of Influenza Virus RNP. Influenza Virology: Current Topics , chapter 1. pp 1–36Edited by Kawaoka Y. Horizon Scientific Press;
  10. Enterlein S., Warfield K. L., Swenson D. L., Stein D. A., Smith J. L., Gamble C. S., Kroeker A. D., Iversen P. L., Bavari S., Muhlberger E. 2006; VP35 knockdown inhibits Ebola virus amplification and protects against lethal infection in mice. Antimicrob Agents Chemother 50:984–993 [CrossRef]
    [Google Scholar]
  11. Flick R., Neumann G., Hoffmann E., Neumeier E., Hobom G. 1996; Promoter elements in the influenza vRNA terminal structure. RNA 2:1046–1057
    [Google Scholar]
  12. Fodor E., Smith M. 2004; The PA subunit is required for efficient nuclear accumulation of the PB1 subunit of the influenza A virus RNA polymerase complex. J Virol 78:9144–9153 [CrossRef]
    [Google Scholar]
  13. Fodor E., Crow M., Mingay L. J., Deng T., Sharps J., Fechter P., Brownlee G. G. 2002; A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. J Virol 76:8989–9001 [CrossRef]
    [Google Scholar]
  14. Fouchier R. A., Schneeberger P. M., Rozendaal F. W., Broekman J. M., Kemink S. A., Munster V., Kuiken T., Rimmelzwaan G. F., Schutten M. other authors 2004; Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A 101:1356–1361 [CrossRef]
    [Google Scholar]
  15. Gabriel G., Dauber B., Wolff T., Planz O., Klenk H. D., Stech J. 2005; The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci U S A 102:18590–18595 [CrossRef]
    [Google Scholar]
  16. Gabriel G., Abram M., Keiner B., Wagner R., Klenk H. D., Stech J. 2007; Differential polymerase activity in avian and mammalian cells determines host range of influenza virus. J Virol 81:9601–9604 [CrossRef]
    [Google Scholar]
  17. Ge Q., McManus M. T., Nguyen T., Shen C. H., Sharp P. A., Eisen H. N., Chen J. 2003; RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc Natl Acad Sci U S A 100:2718–2723 [CrossRef]
    [Google Scholar]
  18. Ge Q., Eisen H. N., Chen J. 2004a; Use of siRNAs to prevent and treat influenza virus infection. Virus Res 102:37–42 [CrossRef]
    [Google Scholar]
  19. Ge Q., Filip L., Bai A., Nguyen T., Eisen H. N., Chen J. 2004b; Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc Natl Acad Sci U S A 101:8676–8681 [CrossRef]
    [Google Scholar]
  20. Ge Q., Pastey M., Kobasa D., Puthavathana P., Lupfer C., Bestwick R. K., Iversen P. L., Chen J., Stein D. A. 2006; Inhibition of multiple subtypes of influenza A virus in cell cultures with morpholino oligomers. Antimicrob Agents Chemother 50:3724–3733 [CrossRef]
    [Google Scholar]
  21. Hofmann S. R., Ettinger R., Zhou Y. J., Gadina M., Lipsky P., Siegel R., Candotti F., O'; Shea, J. 2002; Cytokines and their role in lymphoid development, differentiation and homeostasis. Curr Opin Allergy Clin Immunol 2:495–506 [CrossRef]
    [Google Scholar]
  22. Kiso M., Mitamura K., Sakai-Tagawa Y., Shiraishi K., Kawakami C., Kimura K., Hayden F. G., Sugaya N., Kawaoka Y. 2004; Resistant influenza A viruses in children treated with oseltamivir: descriptive study. Lancet 364:759–765 [CrossRef]
    [Google Scholar]
  23. Kobasa D., Jones S. M., Shinya K., Kash J. C., Copps J., Ebihara H., Hatta Y., Kim J. H., Halfmann P. other authors 2007; Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445:319–323 [CrossRef]
    [Google Scholar]
  24. Le Q. M., Kiso M., Someya K., Sakai Y. T., Nguyen T. H., Nguyen K. H., Pham N. D., Ngyen H. H., Yamada S. other authors 2005; Avian flu: isolation of drug-resistant H5N1 virus. Nature 437:1108 [CrossRef]
    [Google Scholar]
  25. Li S. Q., Orlich M., Rott R. 1990; Generation of seal influenza virus variants pathogenic for chickens, because of hemagglutinin cleavage site changes. J Virol 64:3297–3303
    [Google Scholar]
  26. Ludwig S., Planz O., Pleschka S., Wolff T. 2003; Influenza-virus-induced signaling cascades: targets for antiviral therapy?. Trends Mol Med 9:46–52 [CrossRef]
    [Google Scholar]
  27. McKimm-Breschkin J. L. 2000; Resistance of influenza viruses to neuraminidase inhibitors–a review. Antiviral Res 47:1–17 [CrossRef]
    [Google Scholar]
  28. Monteiro J. M., Harvey C., Trinchieri G. 1998; Role of interleukin-12 in primary influenza virus infection. J Virol 72:4825–4831
    [Google Scholar]
  29. Moulton H. M., Nelson M. H., Hatlevig S. A., Reddy M. T., Iversen P. L. 2004; Cellular uptake of antisense morpholino oligomers conjugated to arginine-rich peptides. Bioconjug Chem 15:290–299 [CrossRef]
    [Google Scholar]
  30. Neumann G., Brownlee G. G., Fodor E., Kawaoka Y. 2004; Orthomyxovirus replication, transcription, and polyadenylation. Curr Top Microbiol Immunol 283:121–143
    [Google Scholar]
  31. Plehn-Dujowich D., Altman S. 1998; Effective inhibition of influenza virus production in cultured cells by external guide sequences and ribonuclease P. Proc Natl Acad Sci U S A 95:7327–7332 [CrossRef]
    [Google Scholar]
  32. Scheiblauer H., Kendal A. P., Rott R. 1995; Pathogenicity of influenza A/Seal/Mass/1/80 virus mutants for mammalian species. Arch Virol 140:341–348 [CrossRef]
    [Google Scholar]
  33. Stein D., Foster E., Huang S. B., Weller D., Summerton J. 1997; A specificity comparison of four antisense types: morpholino, 2′-O-methyl RNA, DNA, and phosphorothioate DNA. Antisense Nucleic Acid Drug Dev 7:151–157 [CrossRef]
    [Google Scholar]
  34. Subbarao K., Klimov A., Katz J., Regnery H., Lim W., Hall H., Perdue M., Swayne D., Bender C. other authors 1998; Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 279:393–396 [CrossRef]
    [Google Scholar]
  35. Summerton J. 1999; Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta 1489141–158 [CrossRef]
    [Google Scholar]
  36. Summerton J., Weller D. 1997; Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7:187–195 [CrossRef]
    [Google Scholar]
  37. Tado M., Abe T., Hatta T., Ishikawa M., Nakada S., Yokota T., Takaku H. 2001; Inhibitory effect of modified 5′-capped short RNA fragments on influenza virus RNA polymerase gene expression. Antivir Chem Chemother 12:353–358 [CrossRef]
    [Google Scholar]
  38. Takahashi H., Hamazaki H., Habu Y., Hayashi M., Abe T., Miyano-Kurosaki N., Takaku H. 2004; A new modified DNA enzyme that targets influenza virus A mRNA inhibits viral infection in cultured cells. FEBS Lett 560:69–74 [CrossRef]
    [Google Scholar]
  39. Tompkins S. M., Lo C. Y., Tumpey T. M., Epstein S. L. 2004; Protection against lethal influenza virus challenge by RNA interference in vivo. Proc Natl Acad Sci U S A 101:8682–8686 [CrossRef]
    [Google Scholar]
  40. Tumpey T. M., Lu X., Morken T., Zaki S. R., Katz J. M. 2000; Depletion of lymphocytes and diminished cytokine production in mice infected with a highly virulent influenza A (H5N1) virus isolated from humans. J Virol 74:6105–6116 [CrossRef]
    [Google Scholar]
  41. Verbeek W., Faulhaber M., Griesinger F., Brittinger G. 2000; Measurement of thrombopoietic levels: clinical and biological relationships. Curr Opin Hematol 7:143–149 [CrossRef]
    [Google Scholar]
  42. Winsor G. L., Waterhouse C. C., MacLellan R. L., Stadnyk A. W. 2000; Interleukin-4 and IFN- gamma differentially stimulate macrophage chemoattractant protein-1 (MCP-1) and eotaxin production by intestinal epithelial cells. J Interferon Cytokine Res 20:299–308 [CrossRef]
    [Google Scholar]
  43. Wolber E. M., Jelkmann W. 2002; Thrombopoietin: the novel hepatic hormone. News Physiol Sci 17:6–10
    [Google Scholar]
  44. Yuan J., Stein D. A., Lim T., Qiu D., Coughlin S., Liu Z., Wang Y., Blouch R., Moulton H. M. other authors 2006; Inhibition of coxsackievirus B3 in cell cultures and in mice by peptide-conjugated morpholino oligomers targeting the internal ribosome entry site. J Virol 80:11510–11519 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83449-0
Loading
/content/journal/jgv/10.1099/vir.0.83449-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error