1887

Abstract

Hepatitis A virus (HAV) antagonizes the innate immune response by inhibition of retinoic acid-inducible gene I-mediated and melanoma differentiation-associated gene 5-mediated beta interferon (IFN-) gene expression. This study showed that this is due to an interaction of HAV with mitochondrial antiviral signalling protein (MAVS)-dependent signalling, in which the viral non-structural protein 2B and the protein intermediate 3ABC recently suggested in this context seem to be involved, cooperatively affecting the activities of MAVS and the kinases TANK-binding kinase 1 (TBK1) and the inhibitor of NF-B kinase ϵ (IKKϵ). In consequence, interferon regulatory factor 3 (IRF-3) is not activated. As IRF-3 is necessary for IFN- transcription, inhibition of this factor results in efficient suppression of IFN- synthesis. This ability might be of vital importance for HAV, which is an exceptionally slow growing virus sensitive to IFN-, as it allows the virus to establish infection and maintain virus replication for a longer period of time.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83521-0
2008-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/7/1593.html?itemId=/content/journal/jgv/10.1099/vir.0.83521-0&mimeType=html&fmt=ahah

References

  1. Brack K., Frings W., Dotzauer A., Vallbracht A. 1998; A cytopathogenic, apoptosis-inducing variant of hepatitis A virus. J Virol 72:3370–3376
    [Google Scholar]
  2. Brack K., Berk I., Magulski T., Lederer J., Dotzauer A., Vallbracht A. 2002; Hepatitis A virus inhibits cellular antiviral defense mechanisms induced by double-stranded RNA. J Virol 76:11920–11930 [CrossRef]
    [Google Scholar]
  3. Chan D. C. 2006; Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22:79–99 [CrossRef]
    [Google Scholar]
  4. Chariot A., Leonardi A., Müller J., Bonif M., Brown K., Siebenlist U. 2002; Association of the adaptor TANK with the I κ B kinase (IKK) regulator NEMO connects IKK complexes with IKKϵ and TBK1 kinases. J Biol Chem 277:37029–37036 [CrossRef]
    [Google Scholar]
  5. Chen H., Chan D. C. 2005; Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet 14:R283–R289 [CrossRef]
    [Google Scholar]
  6. Chow E. K., Castrillo A., Shahangian A., Pei L., O'Connell R. M., Modlin R. L., Tontonoz P., Cheng G. 2006; A role for IRF-3-dependent RXR α repression in hepatotoxicity associated with viral infections. J Exp Med 203:2589–2602 [CrossRef]
    [Google Scholar]
  7. Cohen J. I., Rosenblum B., Ticehurst J. T., Daemer R. J., Feinstone S. M., Purcell R. H. 1987; Complete nucleotide sequence of an attenuated hepatitis A virus: comparison with wild-type virus. Proc Natl Acad Sci U S A 84:2497–2501 [CrossRef]
    [Google Scholar]
  8. Doedens J. R., Kirkegaard K. 1995; Inhibition of cellular protein secretion by poliovirus proteins 2B and 3A. EMBO J 14:894–907
    [Google Scholar]
  9. Dotzauer A., Feinstone S. M., Kaplan G. 1994; Susceptibility of nonprimate cell lines to hepatitis A virus infection. J Virol 68:6064–6068
    [Google Scholar]
  10. Dotzauer A., Gebhardt U., Bieback K., Göttke U., Kracke A., Mages J., Lemon S. M., Vallbracht A. 2000; Hepatitis A virus-specific immunoglobulin A mediates infection of hepatocytes with hepatitis A virus via the asialoglycoprotein receptor. J Virol 74:10950–10957 [CrossRef]
    [Google Scholar]
  11. Ehrhardt C., Kardinal C., Wurzer W. J., Wolff T., von Eichel-Streiber C., Pleschka S., Planz O., Ludwig S. 2004; Rac1 and PAK1 are upstream of IKK-ϵ and TBK-1 in the viral activation of interferon regulatory factor-3. FEBS Lett 567:230–238 [CrossRef]
    [Google Scholar]
  12. Emerson S. U., McRill C., Rosenblum B., Feinstone S. M., Purcell R. H. 1991; Mutations responsible for adaptation of hepatitis A virus to efficient growth in cell culture. J Virol 65:4882–4886
    [Google Scholar]
  13. Emerson S. U., Huang Y. K., McRill C., Lewis M., Purcell R. H. 1992; Mutations in both the 2B and 2C genes of hepatitis A virus are involved in adaptation to growth in cell culture. J Virol 66:650–654
    [Google Scholar]
  14. Emerson S. U., Huang Y. K., Purcell R. H. 1993; 2B and 2C mutations are essential but mutations throughout the genome of HAV contribute to adaptation to cell culture. Virology 194:475–480 [CrossRef]
    [Google Scholar]
  15. Fensterl V., Grotheer D., Berk I., Schlemminger S., Vallbracht A., Dotzauer A. 2005; Hepatitis A virus suppresses RIG-I-mediated IRF-3 activation to block induction of beta interferon. J Virol 79:10968–10977 [CrossRef]
    [Google Scholar]
  16. Fitzgerald K. A., McWhirter S. M., Faia K. L., Rowe D. C., Latz E., Golenbock D. T., Coyle A. J., Liao S.-M., Maniatis T. 2003; IKKϵ and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4:491–496
    [Google Scholar]
  17. Fleischer B., Fleischer S., Maier K., Wiedmann K. H., Sacher M., Thaler H., Vallbracht A. 1990; Clonal analysis of infiltrating T lymphocytes in liver tissue in viral hepatitis A. Immunology 69:14–19
    [Google Scholar]
  18. Gauss-Müller V., Deinhardt F. 1984; Effect of hepatitis A virus infection on cell metabolism in vitro. Proc Soc Exp Biol Med 175:10–15 [CrossRef]
    [Google Scholar]
  19. Gitlin L., Barchet W., Gilfillan S., Cella M., Beutler B., Flavell R. A., Diamond M. S., Colonna M. 2006; Essential role of mda-5 in type I IFN responses to polyriboinosinic : polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Sci U S A 103:8459–8464 [CrossRef]
    [Google Scholar]
  20. Gosert R., Dollenmaier G., Weitz M. 1997; Identification of active-site residues in protease 3C of hepatitis A virus by site-directed mutagenesis. J Virol 71:3062–3068
    [Google Scholar]
  21. Gosert R., Egger D., Bienz K. 2000; A cytopathic and a cell culture adapted hepatitis A virus strain differ in cell killing but not in intracellular membrane rearrangements. Virology 266:157–169 [CrossRef]
    [Google Scholar]
  22. Gust I. D., Feinstone S. M. 1988 Hepatitis A Boca Raton, FL: CRC Press;
    [Google Scholar]
  23. Hemmi H., Takeuchi O., Sato S., Yamamoto M., Kaisho T., Sanjo H., Kawai T., Hoshino K., Takeda K., Akira S. 2004; The roles of two I κ B kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J Exp Med 199:1641–1650 [CrossRef]
    [Google Scholar]
  24. Hornung V., Ellegast J., Kim S., Brzózka K., Jung A., Kato H., Poeck H., Akira S., Conzelmann K.-K. other authors 2006; 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:994–997 [CrossRef]
    [Google Scholar]
  25. Jecht M., Probst C., Gauss-Müller V. 1998; Membrane permeability induced by hepatitis A virus proteins 2B and 2BC and proteolytic processing of HAV 2BC. Virology 252:218–227 [CrossRef]
    [Google Scholar]
  26. Kärber G. 1931; Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Arch Exp Pathol Pharmakol 162:480–483 in German [CrossRef]
    [Google Scholar]
  27. Kato H., Takeuchi O., Sato S., Yoneyama M., Yamamoto M., Matsui K., Uematsu S., Jung A., Kawai T. other authors 2006; Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105 [CrossRef]
    [Google Scholar]
  28. Kawai T., Takahashi K., Sato S., Coban C., Kumar H., Kato H., Ishii K. J., Takeuchi O., Akira S. 2005; IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6:981–988 [CrossRef]
    [Google Scholar]
  29. Lama J., Carrasco L. 1992; Expression of poliovirus nonstructural proteins in Escherichia coli cells. Modification of membrane permeability by 2B and 3A. J Biol Chem 267:15932–15937
    [Google Scholar]
  30. Lin R., Heylbroeck C., Pitha P. M., Hiscott J. 1998; Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol Cell Biol 18:2986–2996
    [Google Scholar]
  31. Maier K., Gabriel P., Koscielniak E., Stierhof Y.-D., Wiedmann K. H., Flehmig B., Vallbracht A. 1988; Human gamma interferon production by cytotoxic T lymphocytes sensitized during hepatitis A virus infection. J Virol 62:3756–3763
    [Google Scholar]
  32. Martin A., Bénichou D., Chao S.-F., Cohen L. M., Lemon S. M. 1999; Maturation of the hepatitis A virus capsid protein VP1 is not dependent on processing by the 3Cpro proteinase. J Virol 73:6220–6227
    [Google Scholar]
  33. McWhirter S. M., Fitzgerald K. A., Rosains J., Rowe D. C., Golenbock D. T., Maniatis T. 2004; IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc Natl Acad Sci U S A 101:233–238 [CrossRef]
    [Google Scholar]
  34. Meylan E., Curran J., Hofmann K., Moradpour D., Binder M., Bartenschlager R., Tschopp J. 2005; Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437:1167–1172 [CrossRef]
    [Google Scholar]
  35. Oshiumi H., Matsumoto M., Funami K., Akazawa T., Seya T. 2003; TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon- β induction. Nat Immunol 4:161–167 [CrossRef]
    [Google Scholar]
  36. Pichlmair A., Schulz O., Tan C. P., Näslund T. I., Liljeström P., Weber F., Reis. e Sousa C. 2006; RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314:997–1001 [CrossRef]
    [Google Scholar]
  37. Probst C., Jecht M., Gauss-Müller V. 1998; Processing of proteinase precursors and their effect on hepatitis A virus particle formation. J Virol 72:8013–8020
    [Google Scholar]
  38. Sato S., Sugiyama M., Yamamoto M., Watanabe Y., Kawai T., Takeda K., Akira S. 2003; Toll/IL-1 receptor domain-containing adaptor inducing IFN- β (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF- κ B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol 171:4304–4310 [CrossRef]
    [Google Scholar]
  39. Schultheiss T., Sommergruber W., Kusov Y., Gauss-Müller V. 1995; Cleavage specificity of purified recombinant hepatitis A virus 3C proteinase on natural substrates. J Virol 69:1727–1733
    [Google Scholar]
  40. Seth R. B., Sun L., Ea C. K., Chen Z. J. 2005; Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF- κ B and IRF3. Cell 122:669–682 [CrossRef]
    [Google Scholar]
  41. Sharma S., tenOever B. R., Grandvaux N., Zhou G.-P., Lin R., Hiscott J. 2003; Triggering the interferon antiviral response through an IKK-related pathway. Science 300:1148–1151 [CrossRef]
    [Google Scholar]
  42. Tasaka M., Sakamoto N., Itakura Y., Nakagawa M., Itsui Y., Sekine-Osajima Y., Nishimura-Sakurai Y., Chen C.-H., Yoneyama N. other authors 2007; Hepatitis C virus non-structural proteins responsible for suppression of the RIG-I/Cardif-induced interferon response. J Gen Virol 88:3323–3333 [CrossRef]
    [Google Scholar]
  43. Teterina N. L., Bienz K., Egger D., Gorbalenya A. E., Ehrenfeld E. 1997; Induction of intracellular membrane rearrangements by HAV proteins 2C and 2BC. Virology 237:66–77 [CrossRef]
    [Google Scholar]
  44. Thanos D., Maniatis T. 1995; Virus induction of human IFN β gene expression requires the assembly of an enhanceosome. Cell 83:1091–1100 [CrossRef]
    [Google Scholar]
  45. Tojima Y., Fujimoto A., Delhase M., Chen Y., Hatakeyama S., Nakayama K.-I., Kaneko Y., Nimura Y., Motoyama N. other authors 2000; NAK is an I κ B kinase-activating kinase. Nature 404:778–782 [CrossRef]
    [Google Scholar]
  46. Vallbracht A., Flehmig B. 1985a; Elimination of a persistent hepatitis A infection in cell cultures by interferon. In The Biology of the Interferon System 1984 pp 339–345Edited by Kirchner H., Schellekens H. Amsterdam, The Netherlands: Elsevier Science Publishers B.V;
    [Google Scholar]
  47. Vallbracht A., Hofman L., Wurster K. G., Flehmig B. 1984; Persistent infection of human fibroblasts by hepatitis A virus. J Gen Virol 65:609–615 [CrossRef]
    [Google Scholar]
  48. Vallbracht A., Gabriel P., Zahn J., Flehmig B. 1985b; Hepatitis A virus infection and the interferon system. J Infect Dis 152:211–213 [CrossRef]
    [Google Scholar]
  49. Vallbracht A., Maier K., Stierhof Y.-D., Wiedmann K. H., Flehmig B., Fleischer B. 1989; Liver-derived cytotoxic T cells in hepatitis A virus infection. J Infect Dis 160:209–217 [CrossRef]
    [Google Scholar]
  50. van Kuppeveld F. J. M., Hoenderop J. G. J., Smeets R. L. L., Willems P. H. G. M., Dijkman H. B. P. M., Galama J. M. D., Melchers W. J. G. 1997; Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release. EMBO J 16:3519–3532 [CrossRef]
    [Google Scholar]
  51. Xu L.-G., Wang Y.-Y., Han K.-J., Li L.-Y., Zhai Z., Shu H.-B. 2005; VISA is an adapter protein required for virus-triggered IFN- β signaling. Mol Cell 19:727–740 [CrossRef]
    [Google Scholar]
  52. Yamamoto M., Sato S., Mori K., Hoshino K., Takeuchi O., Takeda K., Akira S. 2002; A novel toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN- β promoter in the Toll-like receptor signaling. J Immunol 169:6668–6672 [CrossRef]
    [Google Scholar]
  53. Yang H., Ma G., Lin C. H., Orr M., Wathelet M. G. 2004; Mechanism for transcriptional synergy between interferon regulatory factor (IRF)-3 and IRF-7 in activation of the interferon- β gene promoter. Eur J Biochem 271:3693–3703 [CrossRef]
    [Google Scholar]
  54. Yang Y., Liang Y., Qu L., Chen Z., Yi M., Li K., Lemon S. M. 2007; Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor. Proc Natl Acad Sci U S A 104:7253–7258 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83521-0
Loading
/content/journal/jgv/10.1099/vir.0.83521-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error