1887

Abstract

The complete genome sequence of Seneca Valley virus-001 (SVV-001), a small RNA virus, was determined and was shown to have typical picornavirus features. The 7280 nt long genome was predicted to contain a 5′ untranslated region (UTR) of 666 nt, followed by a single long open reading frame consisting of 6543 nt, which encodes a 2181 aa polyprotein. This polyprotein could potentially be cleaved into 12 polypeptides in the standard picornavirus L-4-3-4 layout. A 3′ UTR of 71 nt was followed by a poly(A) tail of unknown length. Comparisons with other picornaviruses showed that the P1, 2C, 3C and 3D polypeptides of SVV-001 were related most closely to those of the cardioviruses, although they were not related as closely to those of encephalomyocarditis virus and Theiler's murine encephalomyelitis virus as the latter were to each other. Most other regions of the polyprotein differed considerably from those of all other known picornaviruses. SVV-001 contains elements of an internal ribosome entry site reminiscent of that found in hepatitis C virus and a number of genetically diverse picornaviruses. SVV-001 is a novel picornavirus and it is proposed that it be classified as the prototype species in a novel genus named ‘’.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83570-0
2008-05-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/5/1265.html?itemId=/content/journal/jgv/10.1099/vir.0.83570-0&mimeType=html&fmt=ahah

References

  1. Adachi M., Brooks S. E., Stein M. R., Franklin B. E., Caccavo F. A. 2006; Destruction of human retinoblastoma after treatment by the E variant of encephalomyocarditis virus. J Neurooncol 77:233–240 [CrossRef]
    [Google Scholar]
  2. Agirre A., Barco A., Carrasco L., Nieva J. L. 2002; Viroporin-mediated membrane permeabilization. Pore formation by nonstructural poliovirus 2B protein. J Biol Chem 277:40434–40441 [CrossRef]
    [Google Scholar]
  3. Allaire M., Chernaia M. M., Malcolm B. A., James M. N. 1994; Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases. Nature 369:72–76 [CrossRef]
    [Google Scholar]
  4. Aminev A. G., Amineva S. P., Palmenberg A. C. 2003a; Encephalomyocarditis viral protein 2A localizes to nucleoli and inhibits cap-dependent mRNA translation. Virus Res 95:45–57 [CrossRef]
    [Google Scholar]
  5. Aminev A. G., Amineva S. P., Palmenberg A. C. 2003b; Encephalomyocarditis virus (EMCV) proteins 2A and 3BCD localize to nuclei and inhibit cellular mRNA transcription but not rRNA transcription. Virus Res 95:59–73 [CrossRef]
    [Google Scholar]
  6. Argos P., Kamer G., Nicklin M. J., Wimmer E. 1984; Similarity in gene organization and homology between proteins of animal picornaviruses and a plant comovirus suggest common ancestry of these virus families. Nucleic Acids Res 12:7251–7267 [CrossRef]
    [Google Scholar]
  7. Au G. G., Lindberg A. M., Barry R. D., Shafren D. R. 2005; Oncolysis of vascular malignant human melanoma tumors by coxsackievirus A21. Int J Oncol 26:1471–1476
    [Google Scholar]
  8. Bazan J. F., Fletterick R. J. 1988; Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Proc Natl Acad Sci U S A 85:7872–7876 [CrossRef]
    [Google Scholar]
  9. Beard C. W., Mason P. W. 2000; Genetic determinants of altered virulence of Taiwanese foot-and-mouth disease virus. J Virol 74:987–991 [CrossRef]
    [Google Scholar]
  10. Bergmann E. M., Mosimann S. C., Chernaia M. M., Malcolm B. A., James M. N. G. 1997; The refined crystal structure of the 3C gene product from hepatitis A virus: specific proteinase activity and RNA recognition. J Virol 71:2436–2448
    [Google Scholar]
  11. Brown E. A., Zhang H., Ping L. H., Lemon S. M. 1992; Secondary structure of the 5′ nontranslated regions of hepatitis C virus and pestivirus genomic RNAs. Nucleic Acids Res 20:5041–5045 [CrossRef]
    [Google Scholar]
  12. Devaney M. A., Vakharia V. N., Lloyd R. E., Ehrenfeld E., Grubman M. J. 1988; Leader protein of foot-and-mouth-disease virus is required for cleavage of the p220 component of the cap-binding protein complex. J Virol 62:4407–4409
    [Google Scholar]
  13. Donnelly M. L., Luke G., Mehrotra A., Li X., Hughes L. E., Gani D., Ryan M. D. 2001; Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage' mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip'. J Gen Virol 82:1013–1025
    [Google Scholar]
  14. Dvorak C. M., Hall D. J., Hill M., Riddle M., Pranter A., Dillman J., Deibel M., Palmenberg A. C. 2001; Leader protein of encephalomyocarditis virus binds zinc, is phosphorylated during viral infection, and affects the efficiency of genome translation. Virology 290:261–271 [CrossRef]
    [Google Scholar]
  15. Fallaux F. J., Bout A., van der Velde I., van den Wollenberg D. J., Hehir K. M., Keegan J., Auger C., Cramer S. J., van Ormondt H. other authors 1998; New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum Gene Ther 9:1909–1917 [CrossRef]
    [Google Scholar]
  16. Gorbalenya A. E., Blinov V. M., Donchenko A. P. 1986; Poliovirus-encoded proteinase 3C: a possible evolutionary link between cellular serine and cysteine proteinase families. FEBS Lett 194:253–257 [CrossRef]
    [Google Scholar]
  17. Gorbalenya A. E., Koonin E. V., Wolf Y. I. 1990; A new superfamily of putative NTP-binding domains encoded by genomes of small DNA and RNA viruses. FEBS Lett 262:145–148 [CrossRef]
    [Google Scholar]
  18. Gradi A., Foeger N., Strong R., Svitkin Y. V., Sonenberg N., Skern T., Belsham G. J. 2004; Cleavage of eukaryotic translation initiation factor 4GII within foot-and-mouth disease virus-infected cells: identification of the L-protease cleavage site in vitro. J Virol 78:3271–3278 [CrossRef]
    [Google Scholar]
  19. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  20. Harris J. R., Racaniello V. R. 2005; Amino acid changes in proteins 2B and 3A mediate rhinovirus type 39 growth in mouse cells. J Virol 79:5363–5373 [CrossRef]
    [Google Scholar]
  21. Hellen C. U. T., de Breyne S. 2007; A distinct group of hepacivirus/pestivirus-like internal ribosome entry sites in members of diverse Picornavirus genera: evidence for modular exchange of functional noncoding RNA elements by recombination. J Virol 81:5850–5863 [CrossRef]
    [Google Scholar]
  22. Johansson S., Niklasson B., Maizel J., Gorbalenya A. E., Lindberg A. M. 2002; Molecular analysis of three Ljungan virus isolates reveals a new, close-to-root lineage of the Picornaviridae with a cluster of two unrelated 2A proteins. J Virol 76:8920–8930 [CrossRef]
    [Google Scholar]
  23. Jones D. T. 1999; Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202 [CrossRef]
    [Google Scholar]
  24. Jones D. T., Taylor W. R., Thornton J. M. 1994; A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry 33:3038–3049 [CrossRef]
    [Google Scholar]
  25. Kapoor A., Victoria J., Simmonds P., Wang C., Shafer R. W., Nims R., Nielsen O., Delwart E. 2008; A highly divergent picornavirus in a marine mammal. J Virol 82:311–320 [CrossRef]
    [Google Scholar]
  26. Knowles N. J., Davies P. R., Henry T., O'Donnell V., Pacheco J. M., Mason P. W. 2001; Emergence in Asia of foot-and-mouth disease viruses with altered host range: characterization of alterations in the 3A protein. J Virol 75:1551–1556 [CrossRef]
    [Google Scholar]
  27. Krumbholz A., Dauber M., Henke A., Birch-Hirschfeld E., Knowles N. J., Stelzner A., Zell R. 2002; Sequencing of porcine enterovirus groups II and III reveals unique features of both virus groups. J Virol 76:5813–5821 [CrossRef]
    [Google Scholar]
  28. Kumar S., Tamura K., Nei M. 2004; MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  29. Leong L. E.-C., Cornell C. T., Semler B. L. 2002; Processing determinants and functions of cleavage products of picornavirus polyproteins. In Molecular Biology of Picornaviruses pp 187–197Edited by Semler B. L., Wimmer E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Lole K. S., Bollinger R. C., Paranjape R. S., Gadkari D., Kulkarni S. S., Novak N. G., Ingersoll R., Sheppard H. W., Ray S. C. 1999; Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73:152–160
    [Google Scholar]
  31. Lomax N. B., Yin F. H. 1989; Evidence for the role of the P2 protein of human rhinovirus in its host range change. J Virol 63:2396–2399
    [Google Scholar]
  32. Marvil P., Knowles N. J., Mockett A. P. A., Britton P., Brown T. D. K., Cavanagh D. 1999; Avian encephalomyelitis virus is a picornavirus and is most closely related to hepatitis A virus. J Gen Virol 80:653–662
    [Google Scholar]
  33. Matthews D. A., Smith W. W., Ferre R. A., Condon B., Budahazi G., Sisson W., Villafranca J. E., Janson C. A., McElroy H. E. other authors 1994; Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell 77:761–771 [CrossRef]
    [Google Scholar]
  34. Matthews D. A., Dragovich P. S., Webber S. E., Fuhrman S. A., Patick A. K., Zalman L. S., Hendrickson T. F., Love R. A., Prins T. J. other authors 1999; Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes. Proc Natl Acad Sci U S A 96:11000–11007 [CrossRef]
    [Google Scholar]
  35. Matzura O., Wennborg A. 1996; RNAdraw: an integrated program for RNA secondary structure calculation and analysis under 32-bit Microsoft Windows. Comput Appl Biosci 12:247–249
    [Google Scholar]
  36. McGuffin L. J., Bryson K., Jones D. T. 2000; The psipred protein structure prediction server. Bioinformatics 16:404–405 [CrossRef]
    [Google Scholar]
  37. Mirmomeni M. H., Hughes P. J., Stanway G. 1997; An RNA tertiary structure in the 3′ untranslated region of enteroviruses is necessary for efficient replication. J Virol 71:2363–2370
    [Google Scholar]
  38. Mosimann S. C., Cherney M. M., Sia S., Plotch S., James M. N. 1997; Refined X-ray crystallographic structure of the poliovirus 3C gene product. J Mol Biol 273:1032–1047 [CrossRef]
    [Google Scholar]
  39. Oberste M. S., Maher K., Pallansch M. A. 2003; Genomic evidence that simian virus 2 and six other simian picornaviruses represent a new genus in Picornaviridae . Virology 314:283–293 [CrossRef]
    [Google Scholar]
  40. Ochiai H., Campbell S. A., Archer G. E., Chewning T. A., Dragunsky E., Ivanov A., Gromeier M., Sampson J. H. 2006; Targeted therapy for glioblastoma multiforme neoplastic meningitis with intrathecal delivery of an oncolytic recombinant poliovirus. Clin Cancer Res 12:1349–1354 [CrossRef]
    [Google Scholar]
  41. Pacheco J. M., Henry T. M., O'Donnell V. K., Gregory J. B., Mason P. W. 2003; Role of nonstructural proteins 3A and 3B in host range and pathogenicity of foot-and-mouth disease virus. J Virol 77:13017–13027 [CrossRef]
    [Google Scholar]
  42. Reddy P. S., Burroughs K. D., Hales L. M., Ganesh S., Jones B. H., Idamakanti N., Hay C., Li S. S., Skele K. L. other authors 2007; Seneca Valley virus: a systemically deliverable oncolytic picornavirus for the treatment of neuroendocrine cancers. J Natl Cancer Inst 99:1623–1633 [CrossRef]
    [Google Scholar]
  43. Reynolds E. S. 1963; The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212 [CrossRef]
    [Google Scholar]
  44. Rothberg P. G., Harris T. J., Nomoto A., Wimmer E. 1978; O4-(5′-uridylyl) tyrosine is the bond between the genome-linked protein and the RNA of poliovirus. Proc Natl Acad Sci U S A 75:4868–4872 [CrossRef]
    [Google Scholar]
  45. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  46. Scraba D. G., Palmenberg A. C. 1999; Cardioviruses ( Picornaviridae ). In Encyclopedia of Virology . , 2nd edn. pp 1–10Edited by Webster R. G., Granoff A. San Diego, CA: Academic Press;
  47. Shafren D. R., Sylvester D., Johansson E. S., Campbell I. G., Barry R. D. 2005; Oncolysis of human ovarian cancers by echovirus type 1. Int J Cancer 115:320–328 [CrossRef]
    [Google Scholar]
  48. Stanway G., Brown F., Christian P., Hovi T., Hyypiä T., King A. M. Q., Knowles N. J., Lemon S. M., Minor P. D. other authors 2005; Family Picornaviridae . In Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses pp 757–778Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. San Diego, CA: Elsevier/Academic Press;
    [Google Scholar]
  49. Tanner N. K., Linder P. 2001; DExD/H box helicases: from generic motors to specific dissociation functions. Mol Cell 8:251–262 [CrossRef]
    [Google Scholar]
  50. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  51. Toyoda H., Yin J., Mueller S., Wimmer E., Cello J. 2007; Oncolytic treatment and cure of neuroblastoma by a novel attenuated poliovirus in a novel poliovirus-susceptible animal model. Cancer Res 67:2857–2864 [CrossRef]
    [Google Scholar]
  52. Tseng C. H., Tsai H. J. 2007; Sequence analysis of a duck picornavirus isolate indicates that it together with porcine enterovirus type 8 and simian picornavirus type 2 should be assigned to a new picornavirus genus. Virus Res 129:104–114 [CrossRef]
    [Google Scholar]
  53. Tseng C. H., Knowles N. J., Tsai H. J. 2007; Molecular analysis of type 1 duck hepatitis virus indicated that it should be assigned to a new genus. Virus Res 123:190–203 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83570-0
Loading
/content/journal/jgv/10.1099/vir.0.83570-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error