1887

Abstract

During the replication of dengue virus, a viral non-structural glycoprotein, NS1, associates with the membrane on the cell surface and in the RNA replication complex. NS1 lacks a transmembrane domain, and the mechanism by which it associates with the membrane remains unclear. This study aimed to investigate whether membrane-bound NS1 is present in lipid rafts in dengue virus-infected cells. Double immunofluorescence staining of infected HEK-293T cells revealed that NS1 localized with raft-associated molecules, ganglioside GM1 and CD55, on the cell surface. In a flotation gradient centrifugation assay, a small proportion of NS1 in Triton X-100 cell lysate consistently co-fractionated with raft markers. Association of NS1 with lipid rafts was detected for all four dengue serotypes, as well as for Japanese encephalitis virus. Analysis of recombinant NS1 forms showed that glycosylated NS1 dimers stably expressed in HEK-293T cells without an additional C-terminal sequence, or with a heterologous transmembrane domain, failed to associate with lipid rafts. In contrast, glycosylphosphatidylinositol-linked recombinant NS1 exhibited a predilection for lipid rafts. These results indicate an association of a minor subpopulation of NS1 with lipid rafts during dengue virus infection and suggest that modification of NS1, possibly lipidation, is required for raft association.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83620-0
2008-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/10/2492.html?itemId=/content/journal/jgv/10.1099/vir.0.83620-0&mimeType=html&fmt=ahah

References

  1. Aizaki H., Lee K. J., Sung V. M., Ishiko H., Lai M. M. 2004; Characterization of the hepatitis C virus RNA replication complex associated with lipid rafts. Virology 324:450–461 [CrossRef]
    [Google Scholar]
  2. Avirutnan P., Punyadee N., Noisakran S., Komoltri C., Thiemmeca S., Auethavornanan K., Jairungsr A., Kanlaya R., Tangthawornchaikul N. other authors 2006; Vascular leakage in severe Dengue virus infections: a potential role for the non-structural viral protein NS1 and complement. J Infect Dis 193:1078–1088 [CrossRef]
    [Google Scholar]
  3. Avota E., Muller N., Klett M., Schneider-Schaulies S. 2004; Measles virus interacts with and alters signal transduction in T-cell lipid rafts. J Virol 78:9552–9559 [CrossRef]
    [Google Scholar]
  4. Bavari S., Bosio C. M., Wiegand E., Ruthel G., Will A. B., Geisbert T. W., Hevey M., Schmaljohn C., Schmaljohn A., Aman M. J. 2002; Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J Exp Med 195:593–602 [CrossRef]
    [Google Scholar]
  5. Brandt W. E., Chiewslip D., Harris D. L., Russell P. K. 1970; Partial purification and characterization of a dengue virus soluble complement-fixing antigen. J Immunol 105:1565–1568
    [Google Scholar]
  6. Cho N. H., Kingston D., Chang H., Kwon E. K., Kim J. M., Lee J. H., Chu H., Choi M. S., Kim I. S., Jung J. U. 2006; Association of herpesvirus saimiri tip with lipid raft is essential for downregulation of T-cell receptor and CD4 coreceptor. J Virol 80:108–118 [CrossRef]
    [Google Scholar]
  7. Coffin W. F. III, Geiger T. R., Martin J. M. 2003; Transmembrane domains 1 and 2 of the latent membrane protein 1 of Epstein–Barr virus contain a lipid raft targeting signal and play a critical role in cytostasis. J Virol 77:3749–3758 [CrossRef]
    [Google Scholar]
  8. Dykstra M. L., Longnecker R., Pierce S. K. 2001; Epstein–Barr virus coopts lipid rafts to block the signaling and antigen transport functions of the BCR. Immunity 14:57–67 [CrossRef]
    [Google Scholar]
  9. Falgout B., Markoff L. 1995; Evidence that flavivirus NS1–NS2A cleavage is mediated by a membrane-bound host protease in the endoplasmic reticulum. J Virol 69:7232–7243
    [Google Scholar]
  10. Flamand M., Deubel V., Girard M. 1992; Expression and secretion of Japanese encephalitis virus nonstructural protein NS1 by insect cells using a recombinant baculovirus. Virology 191:826–836 [CrossRef]
    [Google Scholar]
  11. Flamand M., Megret F., Mathieu M., Lepault J., Rey F. A., Deubel V. 1999; Dengue virus type 1 nonstructural glycoprotein NS1 is secreted from mammalian cells as a soluble hexamer in a glycosylation-dependent fashion. J Virol 73:6104–6110
    [Google Scholar]
  12. Gao L., Aizaki H., He J. W., Lai M. M. 2004; Interactions between viral nonstrucural proteins and host protein hVAP-33 mediate the formation of hepatitis C virus RNA replication complex on lipid raft. J Virol 78:3480–3488 [CrossRef]
    [Google Scholar]
  13. Halstead S. B. 1997; Epidemiology of dengue and dengue hemorrhagic fever. In Dengue and Dengue Hemorrhagic Fever . pp 23–44Edited by Gubler D. J., Kuno G. New York: CAB International;
  14. Hammache D., Yahi N., Maresca M., Pieroni G., Fantini J. 1999; Human erythrocyte glycosphingolipids as alternative cofactors for human immunodeficiency virus type 1 (HIV-1) entry: evidence for CD4-induced interactions between HIV-1 gp120 and reconstituted membrane microdomains of glycosphingolipids (Gb3 and GM3). J Virol 73:5244–5248
    [Google Scholar]
  15. Hatano T., Kubo S., Imai S., Maeda M., Ishikawa K., Mizuno Y., Hattori N. 2007; Leucine-rich repeat kinase 2 associates with lipid rafts. Hum Mol Genet 16:678–690
    [Google Scholar]
  16. Higuchi M., Izumi K. M., Kieff E. 2001; Epstein–Barr virus latent-infection membrane proteins are palmitoylated and raft-associated: protein 1 binds to the cytoskeleton through TNF receptor cytoplasmic factors. Proc Natl Acad Sci U S A 98:4675–4680 [CrossRef]
    [Google Scholar]
  17. Holm K., Weclewicz K., Hewson R., Suomalainen M. 2003; Human immunodeficiency virus type 1 assembly and lipid rafts: Pr55gag associates with membrane domains that are largely resistant to Brij98 but sensitive to Triton X-100. J Virol 77:4805–4817 [CrossRef]
    [Google Scholar]
  18. Ikonen E. 2001; Roles of lipid rafts in membrane transport. Curr Opin Cell Biol 13:470–477 [CrossRef]
    [Google Scholar]
  19. Jacobs M. G., Robinson P. J., Bletchly C., Mackenzie J. M., Young P. R. 2000; Dengue virus nonstructural protein 1 is expressed in a glycosyl-phosphatidylinositol-linked form that is capable of signal transduction. FASEB J 14:1603–1610 [CrossRef]
    [Google Scholar]
  20. Kasinrerk W., Tokrasinwit N., Phunpae P. 1999; CD147 monoclonal antibodies induce homotypic cell aggregation of monocytic cell line U937 via LFA-1/ICAM-1 pathway. Immunology 96:184–192 [CrossRef]
    [Google Scholar]
  21. Kinoshita T., Medof M. E., Silber R., Nussenzweig V. 1985; Distribution of decay-accelerating factor in the peripheral blood of normal individuals and patients with paroxysmal nocturnal hemoglobinuria. J Exp Med 162:75–92 [CrossRef]
    [Google Scholar]
  22. Krautkrämer E., Giese S. I., Gasteier J. E., Muranyi W., Fackler O. T. 2004; Human immunodeficiency virus type 1 Nef activates p21-activated kinase via recruitment into lipid rafts. J Virol 78:4085–4097 [CrossRef]
    [Google Scholar]
  23. Leblois H., Young P. R. 1995; Maturation of the dengue-2 virus NS1 protein in insect cells: effects of downstream NS2A sequences on baculovirus-expressed gene constructs. J Gen Virol 76:979–984 [CrossRef]
    [Google Scholar]
  24. Lee G. E., Church G. A., Wilson D. W. 2003; A subpopulation of tegument protein vhs localizes to detergent-insoluble lipid rafts in herpes simplex virus-infected cells. J Virol 77:2038–2045 [CrossRef]
    [Google Scholar]
  25. Lindenbach B. D., Rice C. M. 1997; trans -Complementation of yellow fever virus NS1 reveals a role in early RNA replication. J Virol 71:9608–9617
    [Google Scholar]
  26. Lindenbach B. D., Rice C. M. 1999; Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function. J Virol 73:4611–4621
    [Google Scholar]
  27. Lindenbach B. D., Rice C. M. 2001; Flaviviridae : the viruses and their replication. In Fields Virology , 4th edn. vol 1 pp 991–1041Edited by Knipe D. M., Howley P. M., Griffin D. E., Lamb R. A., Martin M. A., Roizman B., Strauss S. E. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  28. Mackenzie J. M., Jones M. K., Young P. R. 1996; Immunolocalization of the dengue virus nonstructural glycoprotein NS1 suggests a role in viral RNA replication. Virology 220:232–240 [CrossRef]
    [Google Scholar]
  29. Mackenzie J. M., Khromykh A. A., Jones M. K., Westaway E. G. 1998; Subcellular localization and some biochemical properties of the flavivirus Kunjin nonstructural proteins NS2A and NS4A. Virology 245:203–215 [CrossRef]
    [Google Scholar]
  30. Mañes S., del Real G., Lacalle R. A., Lucas P., Gómez-Moutón C., Sánchez-Palomino S., Delgado R., Alcamí J., Mira E., Martínez A. C. 2000; Membrane raft microdomains mediate lateral assemblies required for HIV-1 infection. EMBO Rep 1:190–196 [CrossRef]
    [Google Scholar]
  31. Manié S. N., Debreyne S., Vincent S., Gerlier D. 2000; Measles virus structural components are enriched into lipid raft microdomains: a potential cellular location for virus assembly. J Virol 74:305–311 [CrossRef]
    [Google Scholar]
  32. Mason P. W. 1989; Maturation of Japanese encephalitis virus glycoproteins produced by infected mammalian and mosquito cells. Virology 169:354–364 [CrossRef]
    [Google Scholar]
  33. Muylaert I. R., Chambers T. J., Galler R., Rice C. M. 1996; Mutagenesis of the N -linked glycosylation sites of the yellow fever virus NS1 protein: effects on virus replication and mouse neurovirulence. Virology 222:159–168 [CrossRef]
    [Google Scholar]
  34. Muylaert I. R., Galler R., Rice C. M. 1997; Genetic analysis of the yellow fever virus NS1 protein: identification of a temperature-sensitive mutation which blocks RNA accumulation. J Virol 71:291–298
    [Google Scholar]
  35. Nguyen D. H., Hildreth J. E. 2000; Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. J Virol 74:3264–3272 [CrossRef]
    [Google Scholar]
  36. Nichols B. J., Kenworthy A. K., Polishchuk R. S., Lodge R., Roberts T. H., Hirschberg K., Phair R. D., Lippincott-Schwartz J. 2001; Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J Cell Biol 153:529–541 [CrossRef]
    [Google Scholar]
  37. Noisakran S., Dechtawewat T., Rinkaewkan P., Puttikhunt C., Kanjanahaluethai A., Kasinrerk W., Sittisombut N., Malasit P. 2007; Characterization of dengue virus NS1 stably expressed in 293T cell lines. J Virol Methods 142:67–80 [CrossRef]
    [Google Scholar]
  38. Ono A., Freed E. O. 2001; Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proc Natl Acad Sci U S A 98:13925–13930 [CrossRef]
    [Google Scholar]
  39. Parton R. G., Lindsay M. 1999; Exploitation of major histocompatibility complex class I molecules and caveolae by simian virus 40. Immunol Rev 168:23–31 [CrossRef]
    [Google Scholar]
  40. Pickl W. F., Pimentel-Muiños F. X., Seed B. 2001; Lipid rafts and pseudotyping. J Virol 75:7175–7183 [CrossRef]
    [Google Scholar]
  41. Pike L. J. 2004; Lipid rafts: heterogeneity on the high seas. Biochem J 378:281–292 [CrossRef]
    [Google Scholar]
  42. Puttikhunt C., Kasinrerk W., Srisa-ad S., Duangchinda T., Silakate W., Moonsom S., Sittisombut N., Malasit P. 2003; Production of anti-dengue NS1 monoclonal antibodies by DNA immunization. J Virol Methods 109:55–61 [CrossRef]
    [Google Scholar]
  43. Rietveld A., Neutz S., Simons K., Eaton S. 1999; Association of sterol- and glycosylphosphatidylinositol-linked proteins with Drosophila raft lipid microdomains. J Biol Chem 274:12049–12054 [CrossRef]
    [Google Scholar]
  44. Scheiffele P., Rietveld A., Wilk T., Simons K. 1999; Influenza viruses select ordered lipid domains during budding from the plasma membrane. J Biol Chem 274:2038–2044 [CrossRef]
    [Google Scholar]
  45. Schlesinger J. J., Brandriss M. W., Putnak J. R., Walsh E. E. 1990; Cell surface expression of yellow fever virus non-structural glycoprotein NS1: consequences of interaction with antibody. J Gen Virol 71:593–599 [CrossRef]
    [Google Scholar]
  46. Shi S. T., Lee K. J., Aizaki H., Hwang S. B., Lai M. M. 2003; Hepatitis C virus RNA replication occurs on a detergent-resistant membrane that cofractionates with caveolin-2. J Virol 77:4160–4168 [CrossRef]
    [Google Scholar]
  47. Simons K., Ikonen E. 1997; Functional rafts in cell membranes. Nature 387:569–572 [CrossRef]
    [Google Scholar]
  48. Simons K., Toomre D. 2000; Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39
    [Google Scholar]
  49. Sittisiri K. 1994; Production and characterization of monoclonal antibodies to dengue 2 virus . MSc thesis Mahidol University; Thailand:
  50. Staffler G., Szekeres A., Schütz G. J., Säemann M. D., Prager E., Zeyda M., Drbal K., Zlabinger G. J., Stulnig T. M., Stockinger H. 2003; Selective inhibition of T cell activation via CD147 through novel modulation of lipid rafts. J Immunol 171:1707–1714 [CrossRef]
    [Google Scholar]
  51. Stuart A. D., Eustace H. E., McKee T. A., Brown T. D. 2002; A novel cell entry pathway for a DAF-using human enterovirus is dependent on lipid rafts. J Virol 76:9307–9322 [CrossRef]
    [Google Scholar]
  52. Sugita Y., Ito K., Shiozuka K., Suzuki H., Gushima H., Tomita M., Masuho Y. 1994; Recombinant soluble CD59 inhibits reactive haemolysis with complement. Immunology 82:34–41
    [Google Scholar]
  53. Taipale J., Chen J. K., Cooper M. K., Wang B., Mann R. K., Milenkovic L., Scott M. P., Beachy P. A. 2000; Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406:1005–1009 [CrossRef]
    [Google Scholar]
  54. Uchil P. D., Satchidanandam V. 2003; Architecture of the flaviviral replication complex. Protease, nuclease, and detergents reveal encasement within double-layered membrane compartments. J Biol Chem 278:24388–24398 [CrossRef]
    [Google Scholar]
  55. van Blitterswijk W. J., van der Luit A. H., Veldman R. J., Verheij M., Borst J. 2003; Ceramide: second messenger or modulator of membrane structure and dynamics?. Biochem J 369:199–211 [CrossRef]
    [Google Scholar]
  56. van der Goot F. G., Harder T. 2001; Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack. Semin Immunol 13:89–97 [CrossRef]
    [Google Scholar]
  57. Verkade P., Simons K. 1997; Robert Feulgen Lecture; 1997; Lipid microdomains and membrane trafficking in mammalian cells. Histochem Cell Biol 108:211–220 [CrossRef]
    [Google Scholar]
  58. Westaway E. G., Mackenzie J. M., Kenney M. T., Jones M. K., Khromykh A. A. 1997; Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structures. J Virol 71:6650–6661
    [Google Scholar]
  59. Winkler G., Maxwell S. E., Ruemmler C., Stollar V. 1989; Newly synthesized dengue-2 virus nonstructural protein NS1 is a soluble protein but becomes partially hydrophobic and membrane-associated after dimerization. Virology 171:302–305 [CrossRef]
    [Google Scholar]
  60. Zhai L., Chaturvedi D., Cumberledge S. 2004; Drosophila Wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine. J Biol Chem 279:33220–33227 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83620-0
Loading
/content/journal/jgv/10.1099/vir.0.83620-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error