1887

Abstract

The molecular mechanisms governing severe acute respiratory syndrome coronavirus-induced pathology are not fully understood. Virus infection and some individual viral proteins, including the 3a protein, induce apoptosis. However, the cellular targets leading to 3a protein-mediated apoptosis have not been fully characterized. This study showed that the 3a protein modulates the mitochondrial death pathway in two possible ways. Activation of caspase-8 through extrinsic signal(s) caused Bid activation. In the intrinsic pathway, there was activation of caspase-9 and cytochrome release from the mitochondria. This was the result of increased Bax oligomerization and higher levels of p53 in 3a protein-expressing cells, which depended on the activation of p38 MAP kinase (MAPK) in these cells. For p38 activation and apoptosis induction, the 3a cytoplasmic domain was sufficient. In direct Annexin V staining assays, the 3a protein-expressing cells showed increased apoptosis that was attenuated with the p38 MAPK inhibitor SB203580. A block in nuclear translocation of the STAT3 transcription factor in cells expressing the 3a protein was also observed. These results have been used to present a model of 3a-mediated apoptosis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83665-0
2008-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/8/1960.html?itemId=/content/journal/jgv/10.1099/vir.0.83665-0&mimeType=html&fmt=ahah

References

  1. Adams J. M., Cory S. 1998; The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326 [CrossRef]
    [Google Scholar]
  2. Baptiste N., Prives C. 2004; p53 in the cytoplasm: a question of overkill?. Cell 116:487–489 [CrossRef]
    [Google Scholar]
  3. Bromberg J. 2002; Stat proteins and oncogenesis. J Clin Invest 109:1139–1142 [CrossRef]
    [Google Scholar]
  4. Bulavin D. V., Saito S., Hollander M. C., Sakaguchi K., Anderson C. W., Appella E., Fornace A. J. Jr 1999; Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J 18:6845–6854 [CrossRef]
    [Google Scholar]
  5. Chang L., Karin M. 2001; Mammalian MAP kinase signalling cascades. Nature 410:37–40 [CrossRef]
    [Google Scholar]
  6. Chen L., Willis S. N., Wei A., Smith B. J., Fletcher J. I., Hinds M. G., Colman P. M., Day C. L., Adams J. M., Huang D. C. 2005; Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17:393–403 [CrossRef]
    [Google Scholar]
  7. Damm E. M., Pelkmans L., Kartenbeck J., Mezzacasa A., Kurzchalia T., Helenius A. 2005; Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J Cell Biol 168:477–488 [CrossRef]
    [Google Scholar]
  8. Darnell J. E. Jr 1997; STATs and gene regulation. Science 277:1630–1635 [CrossRef]
    [Google Scholar]
  9. Desagher S., Osen-Sand A., Nichols A., Eskes R., Montessuit S., Lauper S., Maundrell K., Antonsson B., Martinou J. C. 1999; Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144:891–901 [CrossRef]
    [Google Scholar]
  10. Fujimoto I., Pan J., Takizawa T., Nakanishi Y. 2000; Virus clearance through apoptosis-dependent phagocytosis of influenza A virus-infected cells by macrophages. J Virol 74:3399–3403 [CrossRef]
    [Google Scholar]
  11. Ghatan S., Larner S., Kinoshita Y., Hetman M., Patel L., Xia Z., Youle R. J., Morrison R. S. 2000; p38 MAP kinase mediates Bax translocation in nitric oxide-induced apoptosis in neurons. J Cell Biol 150:335–347 [CrossRef]
    [Google Scholar]
  12. Green D. R., Kroemer G. 2004; The pathophysiology of mitochondrial cell death. Science 305:626–629 [CrossRef]
    [Google Scholar]
  13. Ito N., Mossel E. C., Narayanan K., Popov V. L., Huang C., Inoue T., Peters C. J., Makino S. 2005; Severe acute respiratory syndrome coronavirus 3a protein is a viral structural protein. J Virol 79:3182–3186 [CrossRef]
    [Google Scholar]
  14. Kaye M. 2006; SARS-associated coronavirus replication in cell lines. Emerg Infect Dis 12:128–133 [CrossRef]
    [Google Scholar]
  15. Koopman G., Reutelingsperger C. P., Kuijten G. A., Keehnen R. M., Pals S. T., van Oers M. H. 1994; Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420
    [Google Scholar]
  16. Kopecky-Bromberg S. A., Martinez-Sobrido L., Frieman M., Baric R. A., Palese P. 2007; Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol 81:548–557 [CrossRef]
    [Google Scholar]
  17. Kuwana T., Mackey M. R., Perkins G., Ellisman M. H., Latterich M., Schneiter R., Green D. R., Newmeyer D. D. 2002; Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111:331–342 [CrossRef]
    [Google Scholar]
  18. Law P. T., Wong C. H., Au T. C., Chuck C. P., Kong S. K., Chan P. K., To K. F., Lo A. W., Chan J. Y. other authors 2005; The 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in Vero E6 cells. J Gen Virol 86:1921–1930 [CrossRef]
    [Google Scholar]
  19. Levy D. E., Lee C. K. 2002; What does Stat3 do?. J Clin Invest 109:1143–1148 [CrossRef]
    [Google Scholar]
  20. Lu W., Zheng B. J., Xu K., Schwarz W., Du L., Wong C. K., Chen J., Duan S., Deubel V., Sun B. 2006; Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release. Proc Natl Acad Sci U S A 103:12540–12545 [CrossRef]
    [Google Scholar]
  21. Luo X., Budihardjo I., Zou H., Slaughter C., Wang X. 1998; Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490 [CrossRef]
    [Google Scholar]
  22. Lyles D. S. 2000; Cytopathogenesis and inhibition of host gene expression by RNA viruses. Microbiol Mol Biol Rev 64:709–724 [CrossRef]
    [Google Scholar]
  23. Marra M. A., Jones S. J., Astell C. R., Holt R. A., Brooks-Wilson A., Butterfield Y. S., Khattra J., Asano J. K., Barber S. A. other authors 2003; The genome sequence of the SARS-associated coronavirus. Science 300:1399–1404 [CrossRef]
    [Google Scholar]
  24. Mayer B., Oberbauer R. 2003; Mitochondrial regulation of apoptosis. News Physiol Sci 18:89–94
    [Google Scholar]
  25. Meek D. W. 1998; Multisite phosphorylation and the integration of stress signals at p53. Cell Signal 10:159–166 [CrossRef]
    [Google Scholar]
  26. Miyashita T., Reed J. C. 1995; Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299 [CrossRef]
    [Google Scholar]
  27. Mizutani T., Fukushi S., Saijo M., Kurane I., Morikawa S. 2004; Phosphorylation of p38 MAPK and its downstream targets in SARS coronavirus-infected cells. Biochem Biophys Res Commun 319:1228–1234 [CrossRef]
    [Google Scholar]
  28. Niu G., Wright K. L., Ma Y., Wright G. M., Huang M., Irby R., Briggs J., Karras J., Cress W. D. other authors 2005; Role of Stat3 in regulating p53 expression and function. Mol Cell Biol 25:7432–7440 [CrossRef]
    [Google Scholar]
  29. Noh J. S., Kang H. J., Kim E. Y., Sohn S., Chung Y. K., Kim S. U., Gwag B. J. 2000; Haloperidol-induced neuronal apoptosis: role of p38 and c-Jun-NH2-terminal protein kinase. J Neurochem 75:2327–2334
    [Google Scholar]
  30. Oda E., Ohki R., Murasawa H., Nemoto J., Shibue T., Yamashita T., Tokino T., Taniguchi T., Tanaka N. 2000; Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288:1053–1058 [CrossRef]
    [Google Scholar]
  31. Padhan K., Tanwar C., Hussain A., Hui P. Y., Lee M. Y., Cheung C. Y., Peiris J. S., Jameel S. 2007; Severe acute respiratory syndrome coronavirus Orf3a protein interacts with caveolin. J Gen Virol 88:3067–3077 [CrossRef]
    [Google Scholar]
  32. Peiris J. S., Lai S. T., Poon L. L., Guan Y., Yam L. Y., Lim W., Nicholls J., Yee W. K., Yan W. W. other authors 2003; Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361:1319–1325 [CrossRef]
    [Google Scholar]
  33. Rota P. A., Oberste M. S., Monroe S. S., Nix W. A., Campagnoli R., Icenogle J. P., Penaranda S., Bankamp B., Maher K. other authors 2003; Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300:1394–1399 [CrossRef]
    [Google Scholar]
  34. She Q. B., Chen N., Dong Z. 2000; ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. J Biol Chem 275:20444–20449 [CrossRef]
    [Google Scholar]
  35. Shen S., Lin P. S., Chao Y. C., Zhang A., Yang X., Lim S. G., Hong W., Tan Y. J. 2005; The severe acute respiratory syndrome coronavirus 3a is a novel structural protein. Biochem Biophys Res Commun 330:286–292 [CrossRef]
    [Google Scholar]
  36. Shieh S. Y., Ikeda M., Taya Y., Prives C. 1997; DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334 [CrossRef]
    [Google Scholar]
  37. Tan Y. J. 2005; The severe acute respiratory syndrome (SARS)-coronavirus 3a protein may function as a modulator of the trafficking properties of the spike protein. Virol J 2:5 [CrossRef]
    [Google Scholar]
  38. Tan Y. J., Goh P. Y., Fielding B. C., Shen S., Chou C. F., Fu J. L., Leong H. N., Leo Y. S., Ooi E. E. & other authors (2004a). Profiles of antibody responses against severe acute respiratory syndrome coronavirus recombinant proteins and their potential use as diagnostic markers. Clin Diagn Lab Immunol 11:362–371
    [Google Scholar]
  39. Tan Y. J., Teng E., Shen S., Tan T. H., Goh P. Y., Fielding B. C., Ooi E. E., Tan H. C., Lim S. G., Hong W. 2004b; A novel severe acute respiratory syndrome coronavirus protein, U274, is transported to the cell surface and undergoes endocytosis. J Virol 78:6723–6734 [CrossRef]
    [Google Scholar]
  40. Tan Y. J., Tham P. Y., Chan D. Z., Chou C. F., Shen S., Fielding B. C., Tan T. H., Lim S. G., Hong W. 2005; The severe acute respiratory syndrome coronavirus 3a protein up-regulates expression of fibrinogen in lung epithelial cells. J Virol 79:10083–10087 [CrossRef]
    [Google Scholar]
  41. Tartaglia L. A., Rothe M., Hu Y. F., Goeddel D. V. 1993; Tumor necrosis factor's cytotoxic activity is signaled by the p55 TNF receptor. Cell 73:213–216 [CrossRef]
    [Google Scholar]
  42. Timme T. L., Goltsov A., Tahir S., Li L., Wang J., Ren C., Johnston R. N., Thompson T. C. 2000; Caveolin-1 is regulated by c- myc and suppresses c- myc -induced apoptosis. Oncogene 19:3256–3265 [CrossRef]
    [Google Scholar]
  43. Wang H., Rao S., Jiang C. 2007; Molecular pathogenesis of severe acute respiratory syndrome. Microbes Infect 9:119–126 [CrossRef]
    [Google Scholar]
  44. Wolter K. G., Hsu Y. T., Smith C. L., Nechushtan A., Xi X. G., Youle R. J. 1997; Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139:1281–1292 [CrossRef]
    [Google Scholar]
  45. Wong S. L., Chen Y., Chan C. M., Chan C. S., Chan P. K., Chui Y. L., Fung K. P., Waye M. M., Tsui S. K., Chan H. Y. 2005; In vivo functional characterization of the SARS-coronavirus 3a protein in Drosophila . Biochem Biophys Res Commun 337:720–729 [CrossRef]
    [Google Scholar]
  46. Xiang J., Gomez-Navarro J., Arafat W., Liu B., Barker S. D., Alvarez R. D., Siegal G. P., Curiel D. T. 2000; Pro-apoptotic treatment with an adenovirus encoding Bax enhances the effect of chemotherapy in ovarian cancer. J Gene Med 2:97–106
    [Google Scholar]
  47. Yamagishi S., Yamada M., Ishikawa Y., Matsumoto T., Ikeuchi T., Hatanaka H. 2001; p38 mitogen-activated protein kinase regulates low potassium-induced c-Jun phosphorylation and apoptosis in cultured cerebellar granule neurons. J Biol Chem 276:5129–5133 [CrossRef]
    [Google Scholar]
  48. Yan H., Xiao G., Zhang J., Hu Y., Yuan F., Cole D. K., Zheng C., Gao G. F. 2004; SARS coronavirus induces apoptosis in Vero E6 cells. J Med Virol 73:323–331 [CrossRef]
    [Google Scholar]
  49. Yang Z. Y., Werner H. C., Kong W. P., Leung K., Traggiai E., Lanzavecchia A., Nabel G. J. 2005; Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses. Proc Natl Acad Sci U S A 102:797–801 [CrossRef]
    [Google Scholar]
  50. Yount B., Roberts R. S., Sims A. C., Deming D., Frieman M. B., Sparks J., Denison M. R., Davis N., Baric R. S. 2005; Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice. J Virol 79:14909–14922 [CrossRef]
    [Google Scholar]
  51. Yuan X., Yao Z., Wu J., Zhou Y., Shan Y., Dong B., Zhao Z., Hua P., Chen J., Cong Y. 2007; G1 phase cell cycle arrest induced by SARS-CoV 3a protein via the cyclin D3/pRb pathway. Am J Respir Cell Mol Biol 37:9–19 [CrossRef]
    [Google Scholar]
  52. Zeng R., Yang R. F., Shi M. D., Jiang M. R., Xie Y. H., Ruan H. Q., Jiang X. S., Shi L., Zhou H. other authors 2004; Characterization of the 3a protein of SARS-associated coronavirus in infected Vero E6 cells and SARS patients. J Mol Biol 341:271–279 [CrossRef]
    [Google Scholar]
  53. Zhang L., Yu J., Park B. H., Kinzler K. W., Vogelstein B. 2000; Role of BAX in the apoptotic response to anticancer agents. Science 290:989–992 [CrossRef]
    [Google Scholar]
  54. Zou H., Li Y., Liu X., Wang X. 1999; An APAF-1⋅cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274:11549–11556 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83665-0
Loading
/content/journal/jgv/10.1099/vir.0.83665-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error