1887

Abstract

A characteristic of many positive-strand RNA viruses is that, whilst replication of the viral genome is dependent on the expression of the majority of non-structural proteins , virus particle formation can occur when most or all of the structural proteins are co-expressed . Making use of a recently identified hepatitis C virus (HCV) isolate (JFH1) that can be propagated in tissue culture, this study sought to establish whether this is also the case for hepaciviruses. Stable cell lines containing one of two bicistronic replicons derived from the JFH1 isolate were generated that expressed non-structural proteins NS3–5B or NS2–5B. Release and transmission of these replicons to naïve Huh7 cells could then be demonstrated when baculovirus transduction was used to express the HCV proteins absent from the subgenomic replicons. Transmission could be blocked by a neutralizing antibody targeted at the E2 envelope protein, consistent with this phenomenon occurring via -encapsidation of replicon RNA into virus-like particles. Transmission was also dependent on expression of NS2, which was most effective at promoting virus particle formation when expressed on the replicon RNA compared with via baculovirus delivery. Density gradient analysis of the particles revealed the presence of a broad infectious peak between 1.06 and 1.11 g ml, comparable to that seen when propagating full-length virus in tissue culture. In summary, the -encapsidation system described offers a complementary and safer approach to study HCV particle formation and transmission in tissue culture.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.2008.006049-0
2009-04-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/4/833.html?itemId=/content/journal/jgv/10.1099/vir.2008.006049-0&mimeType=html&fmt=ahah

References

  1. Anraku I., Harvey T. J., Linedale R., Gardner J., Harrich D., Suhrbier A., Khromykh A. A. 2002; Kunjin virus replicon vaccine vectors induce protective CD8+ T-cell immunity. J Virol 76:3791–3799 [CrossRef]
    [Google Scholar]
  2. Appel N., Herian U., Bartenschlager R. 2005; Efficient rescue of hepatitis C virus RNA replication by trans -complementation with nonstructural protein 5A. J Virol 79:896–909 [CrossRef]
    [Google Scholar]
  3. Appel N., Zayas M., Miller S., Krijnse-Locker J., Schaller T., Friebe P., Kallis S., Engel U., Bartenschlager R. 2008; Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly. PLoS Pathog 4:e1000035 [CrossRef]
    [Google Scholar]
  4. Blight K. J., Kolykhalov A. A., Rice C. M. 2000; Efficient initiation of HCV RNA replication in cell culture. Science 290:1972–1974 [CrossRef]
    [Google Scholar]
  5. Bukh J., Pietschmann T., Lohmann V., Krieger N., Faulk K., Engle R. E., Govindarajan S., Shapiro M., St Claire M., Bartenschlager R. 2002; Mutations that permit efficient replication of hepatitis C virus RNA in Huh-7 cells prevent productive replication in chimpanzees. Proc Natl Acad Sci U S A 99:14416–14421 [CrossRef]
    [Google Scholar]
  6. Clayton R. F., Owsianka A., Aitken J., Graham S., Bhella D., Patel A. H. 2002; Analysis of antigenicity and topology of E2 glycoprotein present on recombinant hepatitis C virus-like particles. J Virol 76:7672–7682 [CrossRef]
    [Google Scholar]
  7. Date T., Kato T., Miyamoto M., Zhao Z., Yasui K., Mizokami M., Wakita T. 2004; Genotype 2a hepatitis C virus subgenomic replicon can replicate in HepG2 and IMY-N9 cells. J Biol Chem 279:22371–22376 [CrossRef]
    [Google Scholar]
  8. Day C. L., Seth N. P., Lucas M., Appel H., Gauthier L., Lauer G. M., Robbins G. K., Szczepiorkowski Z. M., Casson D. R. other authors 2003; Ex vivo analysis of human memory CD4 T cells specific for hepatitis C virus using MHC class II tetramers. J Clin Invest 112:831–842 [CrossRef]
    [Google Scholar]
  9. Delgrange D., Pillez A., Castelain S., Cocquerel L., Rouille Y., Dubuisson J., Wakita T., Duverlie G., Wychowski C. 2007; Robust production of infectious viral particles in Huh-7 cells by introducing mutations in hepatitis C virus structural proteins. J Gen Virol 88:2495–2503 [CrossRef]
    [Google Scholar]
  10. Deutsch M., Hadziyannis S. J. 2008; Old and emerging therapies in chronic hepatitis C: an update. J Viral Hepat 15:2–11
    [Google Scholar]
  11. Fipaldini C., Bellei B., La M. N. 1999; Expression of hepatitis C virus cDNA in human hepatoma cell line mediated by a hybrid baculovirus–HCV vector. Virology 255:302–311 [CrossRef]
    [Google Scholar]
  12. Gehrke R., Ecker M., Aberle S. W., Allison S. L., Heinz F. X., Mandl C. W. 2003; Incorporation of tick-borne encephalitis virus replicons into virus-like particles by a packaging cell line. J Virol 77:8924–8933 [CrossRef]
    [Google Scholar]
  13. Guiltinan A. M., Kaidarova Z., Custer B., Orland J., Strollo A., Cyrus S., Busch M. P., Murphy E. L. 2008; Increased all-cause, liver, and cardiac mortality among hepatitis C virus-seropositive blood donors. Am J Epidemiol 167:743–750
    [Google Scholar]
  14. Ishii K., Murakami K., Hmwe S. S., Zhang B., Li J., Shirakura M., Morikawa K., Suzuki R., Miyamura T. other authors 2008; Trans -encapsidation of hepatitis C virus subgenomic replicon RNA with viral structure proteins. Biochem Biophys Res Commun 371:446–450 [CrossRef]
    [Google Scholar]
  15. Jones C. T., Patkar C. G., Kuhn R. J. 2005; Construction and applications of yellow fever virus replicons. Virology 331:247–259 [CrossRef]
    [Google Scholar]
  16. Jones C. T., Murray C. L., Eastman D. K., Tassello J., Rice C. M. 2007; Hepatitis C virus p7 and NS2 proteins are essential for production of infectious virus. J Virol 81:8374–8383 [CrossRef]
    [Google Scholar]
  17. Kato T., Date T., Miyamoto M., Furusaka A., Tokushige K., Mizokami M., Wakita T. 2003; Efficient replication of the genotype 2a hepatitis C virus subgenomic replicon. Gastroenterology 125:1808–1817 [CrossRef]
    [Google Scholar]
  18. Khromykh A. A., Varnavski A. N., Westaway E. G. 1998; Encapsidation of the flavivirus Kunjin replicon RNA by using a complementation system providing Kunjin virus structural proteins in trans . J Virol 72:5967–5977
    [Google Scholar]
  19. Koch J. O., Bartenschlager R. 1999; Modulation of hepatitis C virus NS5A hyperphosphorylation by nonstructural proteins NS3, NS4A, and NS4B. J Virol 73:7138–7146
    [Google Scholar]
  20. Krieger N., Lohmann V., Bartenschlager R. 2001; Enhancement of hepatitis C virus RNA replication by cell culture-adaptive mutations. J Virol 75:4614–4624 [CrossRef]
    [Google Scholar]
  21. Lauer G. M., Barnes E., Lucas M., Timm J., Ouchi K., Kim A. Y., Day C. L., Robbins G. K., Casson D. R. other authors 2004; High resolution analysis of cellular immune responses in resolved and persistent hepatitis C virus infection. Gastroenterology 127:924–936 [CrossRef]
    [Google Scholar]
  22. Lindenbach B. D., Evans M. J., Syder A. J., Wolk B., Tellinghuisen T. L., Liu C. C., Maruyama T., Hynes R. O., Burton D. R. other authors 2005; Complete replication of hepatitis C virus in cell culture. Science 309:623–626 [CrossRef]
    [Google Scholar]
  23. Lindenbach B. D., Meuleman P., Ploss A., Vanwolleghem T., Syder A. J., McKeating J. A., Lanford R. E., Feinstone S. M., Major M. E. other authors 2006; Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro . Proc Natl Acad Sci U S A 103:3805–3809 [CrossRef]
    [Google Scholar]
  24. Lohmann V., Korner F., Koch J., Herian U., Theilmann L., Bartenschlager R. 1999; Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285:110–113 [CrossRef]
    [Google Scholar]
  25. Lohmann V., Korner F., Dobierzewska A., Bartenschlager R. 2001; Mutations in hepatitis C virus RNAs conferring cell culture adaptation. J Virol 75:1437–1449 [CrossRef]
    [Google Scholar]
  26. Masaki T., Suzuki R., Murakami K., Aizaki H., Ishii K., Murayama A., Date T., Matsuura Y., Miyamura T. other authors 2008; Interaction of hepatitis C virus nonstructural protein 5A with core protein is critical for the production of infectious virus particles. J Virol 82:7964–7976 [CrossRef]
    [Google Scholar]
  27. McCormick C. J., Rowlands D. J., Harris M. 2002; Efficient delivery and regulable expression of hepatitis C virus full-length and minigenome constructs in hepatocyte-derived cell lines using baculovirus vectors. J Gen Virol 83:383–394
    [Google Scholar]
  28. McCormick C. J., Challinor L., Macdonald A., Rowlands D. J., Harris M. 2004; Introduction of replication-competent hepatitis C virus transcripts using a tetracycline-regulable baculovirus delivery system. J Gen Virol 85:429–439 [CrossRef]
    [Google Scholar]
  29. McCormick C. J., Brown D., Griffin S., Challinor L., Rowlands D. J., Harris M. 2006; A link between translation of the hepatitis C virus polyprotein and polymerase function; possible consequences for hyperphosphorylation of NS5A. J Gen Virol 87:93–102 [CrossRef]
    [Google Scholar]
  30. Miyanari Y., Atsuzawa K., Usuda N., Watashi K., Hishiki T., Zayas M., Bartenschlager R., Wakita T., Hijikata M., Shimotohno K. 2007; The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 9:1089–1097 [CrossRef]
    [Google Scholar]
  31. Neddermann P., Clementi A., De F. R. 1999; Hyperphosphorylation of the hepatitis C virus NS5A protein requires an active NS3 protease, NS4A, NS4B, and NS5A encoded on the same polyprotein. J Virol 73:9984–9991
    [Google Scholar]
  32. Owsianka A., Tarr A. W., Juttla V. S., Lavillette D., Bartosch B., Cosset F. L., Ball J. K., Patel A. H. 2005; Monoclonal antibody AP33 defines a broadly neutralizing epitope on the hepatitis C virus E2 envelope glycoprotein. J Virol 79:11095–11104 [CrossRef]
    [Google Scholar]
  33. Pietschmann T., Lohmann V., Kaul A., Krieger N., Rinck G., Rutter G., Strand D., Bartenschlager R. 2002; Persistent and transient replication of full-length hepatitis C virus genomes in cell culture. J Virol 76:4008–4021 [CrossRef]
    [Google Scholar]
  34. Pietschmann T., Kaul A., Koutsoudakis G., Shavinskaya A., Kallis S., Steinmann E., Abid K., Negro F., Dreux M. other authors 2006; Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc Natl Acad Sci U S A 103:7408–7413 [CrossRef]
    [Google Scholar]
  35. Pushko P., Parker M., Ludwig G. V., Davis N. L., Johnston R. E., Smith J. F. 1997; Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo . Virology 239:389–401 [CrossRef]
    [Google Scholar]
  36. Steinmann E., Brohm C., Kallis S., Bartenschlager R., Pietschmann T. 2008; Efficient trans -encapsidation of hepatitis C virus RNAs into infectious virus-like particles. J Virol 82:7034–7046 [CrossRef]
    [Google Scholar]
  37. Stone A. B. 1974; A simplified method for preparing sucrose gradients. Biochem J 137:117–118
    [Google Scholar]
  38. Suzuki T., Aizaki H., Murakami K., Shoji I., Wakita T. 2007; Molecular biology of hepatitis C virus. J Gastroenterol 42:411–423 [CrossRef]
    [Google Scholar]
  39. Tarr A. W., Owsianka A. M., Timms J. M., McClure C. P., Brown R. J., Hickling T. P., Pietschmann T., Bartenschlager R., Patel A. H., Ball J. K. 2006; Characterization of the hepatitis C virus E2 epitope defined by the broadly neutralizing monoclonal antibody AP33. Hepatology 43:592–601 [CrossRef]
    [Google Scholar]
  40. Wakita T., Pietschmann T., Kato T., Date T., Miyamoto M., Zhao Z., Murthy K., Habermann A., Krausslich H. G. other authors 2005; Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11:791–796 [CrossRef]
    [Google Scholar]
  41. Yi M., Ma Y., Yates J., Lemon S. M. 2007; Compensatory mutations in E1, p7, NS2, and NS3 enhance yields of cell culture-infectious intergenotypic chimeric hepatitis C virus. J Virol 81:629–638 [CrossRef]
    [Google Scholar]
  42. Zhong J., Gastaminza P., Cheng G., Kapadia S., Kato T., Burton D. R., Wieland S. F., Uprichard S. L., Wakita T., Chisari F. V. 2005; Robust hepatitis C virus infection in vitro . Proc Natl Acad Sci U S A 102:9294–9299 [CrossRef]
    [Google Scholar]
  43. Zhou X., Berglund P., Rhodes G., Parker S. E., Jondal M., Liljestrom P. 1994; Self-replicating Semliki Forest virus RNA as recombinant vaccine. Vaccine 12:1510–1514 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.2008.006049-0
Loading
/content/journal/jgv/10.1099/vir.2008.006049-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error