1887

Abstract

Summary

Recombinant DNA clones were constructed in order to study the mechanisms of proteolytic processing and assembly in foot-and-mouth disease virus (FMDV). RNA transcripts from these clones were synthesized using SP6 polymerase and translated in rabbit reticulocyte lysates. Efficient translation occurred in the absence of all 5′ untranslated sequences and processing of the structural proteins occurred in the presence of functional 3C protease which can function . The specificity of 3C protease activity is not limited to Glu-Gly bonds. Translation of correctly processed structural proteins leads to assembly of subviral structures resembling ‘empty’ particles. Further studies on the processing of the FMDV genome show that the primary cleavage (P1–P2) is mediated neither by 3C nor the second FMDV protease L. Preliminary evidence suggests that an initial very rapid cleavage occurs between 2A and 2B with subsequent cleavage of the P1/2A junction probably being carried out by 3C.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-69-9-2313
1988-09-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/69/9/JV0690092313.html?itemId=/content/journal/jgv/10.1099/0022-1317-69-9-2313&mimeType=html&fmt=ahah

References

  1. ARGOS P., KAMER G., NICKLIN M. J. H., WIMMER E. 1984; Similarity in gene organisation and homology between proteins of animal picornaviruses and a plant comovirus suggest common ancestry of these virus families. Nucleic Acids Research 12:7251–7267
    [Google Scholar]
  2. ARNOLD E., LUO M., VRIEND G., ROSSMANN M. G., PALMENBERG A. C, PARKS G. D., NICKLIN M. J. H., WIMMER E. 1987; Implications of the Picornavirus capsid structure for polyprotein processing. Proceedings of the National Academy of Sciences, U.S.A 84:21–25
    [Google Scholar]
  3. BITTLE J. L., HOUGHTEN R. A., ALEXANDER J., SHINNICK T. M., SUTCLIFFE J. G., LERNER R. A., ROWLANDS D. J., BROWN F. 1982; Protection against foot and mouth disease by immunisation with a chemically synthesised peptide predicted from the viral nucleotide sequence. Nature, London 298:30–33
    [Google Scholar]
  4. BOEGE U., KO D. S. W., SCRABA D. G. 1986; Toward an in vitro system for Picornavirus assembly: purification of Mengovirus 14S capsid precursor particles. Journal of Virology 57:275–284
    [Google Scholar]
  5. BOOTHROYD J. C, HIGHFIELD P. E., CROSS G. A. M., ROWLANDS D. J., LOWE P. A., BROWN F., HARRIS T. J. R. 1981; Molecular cloning of foot and mouth disease virus genome and nucleotide sequences in the structural genes. Nature, London 290:800–802
    [Google Scholar]
  6. CARROLL A. R., ROWLANDS D. J., CLARKE B. E. 1984; The complete nucleotide sequence of the RNA coding for the primary translation product of foot and mouth disease virus. Nucleic Acids Research 12:2461–2472
    [Google Scholar]
  7. CLARKE B. E., NEWTON S. E., CARROLL A. R., FRANCIS M. J., APPLEYARD G., SYRED A., HIGHFIELD P. E., ROWLANDS D. J., BROWN F. 1987; Improved immunogenicity of a peptide epitope after fusion to hepatitis B core protein. Nature, London 330:381–384
    [Google Scholar]
  8. FRANCIS M. J., HASTINGS G. Z., SYRED A., MCGINN B., BROWN F., ROWLANDS D. J. 1987; Non-responsiveness to a foot and mouth disease virus peptide overcome by addition of foreign helper T-cell determinants. Nature, London 330:168–170
    [Google Scholar]
  9. GRUBMAN M. J. 1984; In vitro morphogenesis of foot and mouth disease virus. Journal of Virology 49:760–765
    [Google Scholar]
  10. GRUBMAN M. J., MORGAN D. O., KENDALL J., BAXT B. 1985; Capsid intermediates assemble in a foot and mouth disease virus genome RNA-programmed cell-free translation system and in infected cells. Journal of Virology 56:120–126
    [Google Scholar]
  11. HANECAK R., SEMLER B. L., ANDERSON C. W., WIMMER E. 1982; Proteolytic processing of poliovirus polypeptides: antibodies to polypeptide P3-7c inhibit cleavage at glutamine-glycine pairs. Proceedings of the National Academy of Sciences, U.S.A 79:3973–3977
    [Google Scholar]
  12. HOGLE J. M., CHOW M., FILMAN D. J. 1985; Three dimensional structure of polio virus at 2-9 Å resolution. Science 229:1358–1365
    [Google Scholar]
  13. IVANOFF L. A., TOWATARI T., RAY J., KORANT B. D., PETTEWAY S. R. JR 1986; Expression and site specific mutagenesis of the poliovirus 3C protease in Escherichia coli. Proceedings of the National Academy of Sciences, U.S.A 83:5392–5396
    [Google Scholar]
  14. JACKSON R. J. 1986; A detailed kinetic analysis of the in vitro synthesis and processing of encephalomyocarditis virus products. Virology 149:114–127
    [Google Scholar]
  15. KAPLAN G., LUBINSKI J., DASGUPTA A., RACANIELLO V. R. 1985; In vitro synthesis of infectious poliovirus RNA. Proceedings of the National Academy of Sciences, U.S.A 82:8424–8428
    [Google Scholar]
  16. KLEID D. G., YANSURA D., SMALL B., DOWBENKO D., MOORE D. M., GRUBMAN M. J., MCKERCHER P. D., MORGAN D. O., ROBERTSON B. H., BACHRACH H. L. 1981; Cloned viral protein vaccine for foot and mouth disease: responses in cattle and swine. Science 276:1125–1129
    [Google Scholar]
  17. KLUMP W., MARQUARDT O., HOFSCHNEIDER P. H. 1984; Biologically active protease of foot and mouth disease virus is expressed from cloned viral cDNA in E. coli. Proceedings of the National Academy of Sciences, U.S.A 81:3351–3355
    [Google Scholar]
  18. LAEMMLI U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  19. LUO M., VRIEND G., KAMER G., MINOR I., ARNOLD E., ROSSMANN M. G., BOEGE U., SCRABA D. G., DUKE G. M., PALMENBERG A. C. 1987; The atomic structure of Mengo virus at 30 Å resolution. Science 235:182–191
    [Google Scholar]
  20. MANIATIS T., FRITSCH E. F., SAMBROOK J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. MELTON D. A., KREIG P. A., REBAGLIATI M. R., MANIATIS T., ZINN K., GREEN M. R. 1984; Efficient in vitro synthesis of biologically active RNA and RNA hybridisation probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Research 12:7035–7056
    [Google Scholar]
  22. NICKLIN M. J. H., TOYODA H., MURRAY M. G., WIMMER E. 1986; Proteolytic processing in the replication of polio and related viruses. Bio/Technology 4:33–42
    [Google Scholar]
  23. NICKLIN M. J. H., KRAUSSLICH H. G., TOYODA H., DUNN J. I., WIMMER E. 1987; PolioviniS polypeptide precursors: expression in vitro and processing by exogenous 3C and 2A proteinases. Proceedings of the National Academy of Sciences, U.S.A 84:4002–4006
    [Google Scholar]
  24. PALMENBERG A. C, KIRBY E. M., JANDA M. R., DRAKE N. L., DUKE G. M., POTRATZ K. F., COLLETT M. S. 1984; The nucleotide and deduced amino acid sequences of the encephalomyocarditis viral polyprotein coding region. Nucleic Acids Research 13:2969–2985
    [Google Scholar]
  25. PARKS G. D., PALMENBERG A. C. 1987; Site specific mutations at a Picornavirus VP3/VP1 cleavage site disrupt in vitro processing and assembly of capsid precursors. Journal of Virology 61:3680–3687
    [Google Scholar]
  26. PARKS G. D., DUKE G. M., PALMENBERG A. C. 1986; Encephalomyocarditis virus 3C protease: efficient cell-free expression from clones which link viral 5′ noncoding sequences to the P3 region. Journal of Virology 60:376–384
    [Google Scholar]
  27. PELHAM H. R. B., JACKSON R. J. 1976; An efficient mRNA-dependent translation system from reticulocyte lysates. European Journal of Biochemistry 67:247–256
    [Google Scholar]
  28. RACANIELLO V. R., BALTIMORE D. 1981; Cloned poliovirus complementary DNA is infectious in mammalian cells. Science 214:916–919
    [Google Scholar]
  29. ROSSMANN M. G., ARNOLD E., ERICKSON J. W., FRANKENBERGER E. A., GRIFFITH J. P., HECHT H.-J., JOHNSON J. E., KAMER G., LUO M., MOSSER A. G., RUECKERT R. R., SHERRY B., VRIEND G. 1985; Structure of a human common cold virus and functional relationships to other picornaviruses. Nature, London 317:145–153
    [Google Scholar]
  30. ROWLANDS D. J., SANGAR D. V., BROWN F. 1975; A comparative chemical and serological study of the full and empty particles of foot-and-mouth disease virus. Journal of General Virology 26:227–238
    [Google Scholar]
  31. RUECKERT R. R., WIMMER E. 1984; Systematic nomenclature of Picornavirus proteins. Journal of Virology 50:957–959
    [Google Scholar]
  32. SANGAR D. V., BLACK D. N., ROWLANDS D. J., HARRIS T. J. R., BROWN F. 1980; Location of the initiation site for protein synthesis on foot and mouth disease virus RNA by in vitro translation of defined fragments of the RNA. Journal of Virology 33:59–68
    [Google Scholar]
  33. SANGAR D. V., CLARK P. R., CARROLL A. R., ROWLANDS D. J., CLARKE B. E. 1988; Modification of the leader protein (Lb) of foot-and-mouth disease virus. Journal of General Virology 69:2327–2333
    [Google Scholar]
  34. STREBEL K., BECK E. 1986; A second protease of foot and mouth disease virus. Journal of Virology 58:893–899
    [Google Scholar]
  35. TOYODA H., NICKLIN M. J. H., MURRAY M. G., ANDERSON C W., DUNN J. J., STUDIER F. W., WIMMER E. 1986; A second virus-encoded proteinase involved in proteolytic processing of poliovirus polyprotein. Cell 45:761–770
    [Google Scholar]
  36. VAKHARIA V. N., DEVANEY M. A., MOORE D. M., DÜNN J. J., GRUBMAN M. J. 1987; Proteolytic processing of foot and mouth disease virus polyproteins expressed in a cell free system from clone-derived transcripts. Journal of Virology 61:3199–3207
    [Google Scholar]
  37. VAN DER WERF S., BRADLEY J., WIMMER E., STUDIER F. W., DÜNN J. J. 1986; Synthesis of infectious poliovirus RNA by purified T7 RNA polymerase. Proceedings of the National Academy of Sciences, U.S.A 83:2330–2334
    [Google Scholar]
  38. WERNER G., ROSENWIRTH B., BAUER E., SEIFERT J.-M., WERNER F.-J., BESEMER J. 1986; Molecular cloning and sequence determination of the genomic regions encoding protease and genome-linked protein of three picornaviruses. Journal of Virology 57:1084–1093
    [Google Scholar]
  39. WINTHER M. D., ALLEN G., BOMFORD R. H., BROWN F. 1986; Bacterially expressed antigenic peptide from foot and mouth disease virus capsid elicits variable immunological responses in animals. Journal of Immunology 136:1835–1840
    [Google Scholar]
  40. YPMA-WONG M. F., SEMLER B. L. 1987a; In vitro molecular genetics as a tool for determining the differential cleavage specificities of the poliovirus 3C proteinase. Nucleic Acids Research 15:2069–2088
    [Google Scholar]
  41. YPMA-WONG M. F., SEMLER B. L. 1987b; Processing determinants required for in vitro cleavage of the poliovirus P1 precursor to capsid proteins. Journal of Virology 61:3181–3189
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-69-9-2313
Loading
/content/journal/jgv/10.1099/0022-1317-69-9-2313
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error