1887

Abstract

Neutralizing monoclonal antibodies (MAbs) were produced in BALB/c mice immunized with live modified vaccinia virus Ankara or infected with sublethal doses of the neurovirulent vaccinia virus strain Munich 1. The immunization scheme proved to be important for obtaining MAbs of different specificity. The MAbs could be classified into three epitope groups (1 A, 1 B and 2). Immunogold electron microscopy demonstrated that the epitopes were localized on the virus surface. In immunoblotting, MAbs were reactive with polypeptides of 14K, 16K and 30K. Purified MAbs binding to the epitopes 1 A and 2 showed a 50 % reduction of 100 p.f.u./0·05 ml vaccinia virus M1 with respectively 3·9 and 5·9 ng of immunoglobulin/ 0·05 ml. MAbs binding to the epitope 1 B neutralized the virus at a concentration of 250 ng/0·05 ml. In intraperitoneal challenge experiments, MAbs binding to the epitopes 1 A and 2 protected mice against 4 LD of vaccinia virus Ml, but not against local lesions by subcutaneous application. MAbs against epitope 1 B had no protective effect The three epitopes were present in 14 of 16 orthopoxviruses tested but with quantitative differences. Maximal binding () and the antibody concentration at half-maximal binding () which were calculated as for Michaelis-Menten kinetics from regression analysis of the ELISA data and the MAb concentration giving 50 % plaque reduction were the basis for the evaluation. In monkeypox virus Kopenhagen the epitopes 1 A and 1 B were absent. MAbs binding to epitope 2 reacted just as well as with vaccinia viruses. Ectromelia virus lacked all the epitopes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-10-2341
1990-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/10/JV0710102341.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-10-2341&mimeType=html&fmt=ahah

References

  1. Appleyard G., Hapel A. J., Boulter E. A. 1971; An antigenic difference between intracellular and extracellular rabbitpox virus. Journal of General Virology 13:9–17
    [Google Scholar]
  2. Altenburger W., Süter C.-P., Altenburger J. 1989; Partial deletion of the human host range gene in the attenuated vaccinia virus MVA. Archives of Virology 105:15–25
    [Google Scholar]
  3. Baxby D., Hill B. J. 1971; Characteristics of a new poxvirus isolated from Indian buffaloes. Archiv für die gesamte Virusforschung 35:70–79
    [Google Scholar]
  4. Baxby D., Ghaboosi B. 1977; Laboratory characteristics of poxviruses isolated from captive elephants in Germany. Journal of General Virology 37:407–414
    [Google Scholar]
  5. Becker Y. 1982; The need for characterization of pathogenicity genes of recombinant DNA viruses used as human vaccines. Virus Genes 1:117–120
    [Google Scholar]
  6. Bennett M., Gaskell R. M., Gaskell C. J., Baxby D., Kelly D. F. 1989; Studies on poxvirus infection in cats. Archives of Virology 104:19–33
    [Google Scholar]
  7. Boulter E. A., Zwartouw H. T., Titmus D. H. J., Maber H. B. 1971; The nature of the immune state produced by inactivated vaccinia virus in rabbits. American Journal of Epidemiology 94:612–620
    [Google Scholar]
  8. Czerny C.-P., Mahnel H., Hornstein O. 1989; Prüfung der Immunität gegen Orthopockenviren an der weiflen Maus mit Vacciniavirus. Journal of Veterinary Medicine B 36:100–112
    [Google Scholar]
  9. Dallo S., Esteban M. 1987; Isolation and characterization of attenuated mutants of vaccinia virus. Virology 159:408–422
    [Google Scholar]
  10. Dallo S., Rodriguez J. F., Esteban M. 1987; A 14K envelope protein of vaccinia virus with an important role in virus-host cell interactions is altered during virus persistence and determines the plaque size phenotype of the virus. Virology 159:423–432
    [Google Scholar]
  11. Easterbrook K. B. 1966; Controlled degradation of vaccinia virions in vitro: an electron microscopic study. Journal of Ultrastructure Research 14:484–496
    [Google Scholar]
  12. Edwards K. M., Andrews T. C., Van Savage J., Palmer P. S., Moyer W. 1988; Poxvirus deletion mutants: virulence and immunogenicity. Microbial Pathogenesis 4:325–333
    [Google Scholar]
  13. Esposito J. J., Knight J. C. 1985; Orthopox virus DNA: a comparison of restriction profiles and maps. Virology 143:230–251
    [Google Scholar]
  14. Essani K., Dales G. 1979; Biogenesis of vaccinia: evidence of more than 100 polypeptides. Virology 95:385–394
    [Google Scholar]
  15. Guesdon J. L., Ternynck T., Avrameas S. 1979; The use of avidin-biotin interaction in immunoenzymatic techniques. Journal of Histochemistry and Cytochemistry 27:1131–1139
    [Google Scholar]
  16. Ichihashi Y., Oie M. 1980; Adsorption and penetration of the trypsinized vaccinia virion. Virology 101:50–60
    [Google Scholar]
  17. Ichihashi Y., Oie M. 1988; Epitope mosaic on the surface proteins of orthopoxviruses. Virology 163:133–144
    [Google Scholar]
  18. Ichihashi Y., Tsuruhara T., Oie M. 1982; The effect of proteolytic enzymes on the infectivity of vaccinia virus. Virology 122:279–289
    [Google Scholar]
  19. Janeczko R. A., Rodriguez J. F., Esteban M. 1987; Studies on the mechanism of entry of vaccinia virus in animal cells. Archives of Virology 92:135–150
    [Google Scholar]
  20. Joklik W. K. 1962; The purification of four strains of poxvirus. Virology 18:9–18
    [Google Scholar]
  21. Kaplan C. 1989; Vaccinia virus: a suitable vehicle for recombinant vaccines?. Archives of Virology 106:127–139
    [Google Scholar]
  22. Kearney J. F., Radbruch A., Liesegang B., Rajewsky K. 1979; A new mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibody-secreting hybrid cell lines. Journal of Immunology 123:1548–1550
    [Google Scholar]
  23. Köhler G., Milstein C. 1975; Continuous cultures of fused cells secreting antibody of predefined specificity. Nature; London: 256495–497
    [Google Scholar]
  24. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  25. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193:265–275
    [Google Scholar]
  26. Mahnel H. 1974; Labordifferenzierung der Orthopockenviren. Journal of Veterinary Medicine B 21:242–258
    [Google Scholar]
  27. Mahnel H. 1986; Identifizierung eines Kuhpockenvirus, isoliert von einem Kind. Journal of Veterinary Medicine B 33:362–370
    [Google Scholar]
  28. Mahnel H., Czerny C.-P., Mayr A. 1989; Nachweis und Identifizierung von Pockenvirus bei Hauskatzen. Journal of Veterinary Medicine B 36:231–236
    [Google Scholar]
  29. Mayr A., Danner K. 1979; Bedeutung von Tierpocken fur den Menschen nach Aufhebung der Pflichtimpfung gegen Pocken. Berliner und Münchener tierärztliche Wochenschrift 92:251–256
    [Google Scholar]
  30. Mayr A., Bachmann P. A., Bibrack B., Wittmann G. 1974 Virologische Arbeitsmethoden Band I: Zellkulturen-Bebriitete Hiihnereier-Versuchstiere Stuttgart: Gustav-Fischer Verlag;
    [Google Scholar]
  31. Mayr A., Hochstein-Mintzel V., Stickel H. 1975; Abstammung, Eigenschaften und Verwendung des attenuierten Vaccinia-Stammes MVA. Infection 3:6–14
    [Google Scholar]
  32. Mayr A., Bachmann P. A., Bibrack B., Wittmann G. 1977 Virologische Arbeitsmethoden Band II: Serologic Stuttgart: Gustav-Fischer Verlag;
    [Google Scholar]
  33. Mayr A., Büttner M., Wolf G., Meyer H., Czerny C. 1989; Experimenteller Nachweis paraspezfischer Wirkungen von gereinigten und inaktivierten Pockenviren. Journal of Veterinary Medicine B 36:81–99
    [Google Scholar]
  34. Mbuy G. N., Morris R. E., Bubel K. 1982; Inhibition of cellular protein synthesis by vaccinia virus surface tubules. Virology 116:137–147
    [Google Scholar]
  35. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. 1981; Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science 211:1437–1438
    [Google Scholar]
  36. Meyer H., Hübert P. H. 1988; Isolation and characterization of monoclonal antibodies against an attenuated vaccine strain of equine herpesvirus type 1 (EHV-1). Veterinary Microbiology 18:95–101
    [Google Scholar]
  37. Murti K. G., Webster R. G. 1986; Distribution of hemagglutinin and neuraminidase on influenza virions as revealed by immune electron microscopy. Virology 149:36–43
    [Google Scholar]
  38. Nasemann T., Mayr A., Schraeg G., Kimmig W., Mahnel H. 1987; Infektion eines Mädchens mit Kuhpockenvirus. Hautarzt 38:414–418
    [Google Scholar]
  39. Oie M., Ichihashi Y. 1981; Characterization of vaccinia polypeptides. Virology 113:263–276
    [Google Scholar]
  40. Oie M., Ichihashi Y. 1987; Modification of vaccinia virus penetration proteins analyzed by monoclonal antibodies. Virology 157:449–459
    [Google Scholar]
  41. Paez E., Dallo S., Esteban M. 1987; Virus attenuation and identification of structural proteins of vaccinia virus that are selectively modified during virus persistence. Journal of Virology 61:2642–2647
    [Google Scholar]
  42. Payne L. G. 1978; Polypeptide composition of extracellular enveloped vaccinia virus. Journal of Virology 27:28–37
    [Google Scholar]
  43. Payne L. G. 1980; Significance of extracellular enveloped virus in the in vitro and in vivo dissemination of vaccinia. Journal of General Virology 50:89–100
    [Google Scholar]
  44. Rodriguez J. F., Esteban M. 1987; Mapping and nucleotide sequence of the vaccinia virus gene that encodes a 14-kilodalton fusion protein. Journal of Virology 61:3550–3554
    [Google Scholar]
  45. Rodriguez J. F., Janeczko R., Esteban M. 1985; Isolation and characterization of neutralizing monoclonal antibodies to vaccinia virus. Journal of Virology 56:482–488
    [Google Scholar]
  46. Rodriguez J. F., Paez E., Esteban M. 1987; A 14,000-Mr envelope protein of vaccinia virus is involved in cell fusion and forms covalently linked trimers. Journal of Virology 61:395–432
    [Google Scholar]
  47. Rösen A., Pilaski J., Darai G. 1987; Genomic characterization of a poxvirus isolated from a child. Medical Microbiology and Immunology 176:181–188
    [Google Scholar]
  48. Stern W., Dales S. 1976; Biogenesis of vaccinia: isolation and characterization of a surface component that elicits antibody suppressing infectivity and cell-cell fusion. Virology 75:232–241
    [Google Scholar]
  49. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences U.S.A.: 764350–4354
    [Google Scholar]
  50. Van Heyningen V., Brock D. J. H., Van Heyningen S. 1983; A simple method for ranking the affinities of monoclonal antibodies. Journal of Immunological Methods 62:147–153
    [Google Scholar]
  51. Witter R. 1982; Organization and expression of the poxvirus genome. Experientia 38:285–297
    [Google Scholar]
  52. Wokatsch R. 1972; Vaccinia virus. In Strains of Human Viruses pp 241–257 Majer M., Plotkin S. Edited by Basel: S. Karger;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-10-2341
Loading
/content/journal/jgv/10.1099/0022-1317-71-10-2341
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error